PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 161 | 07 |

Tytuł artykułu

Struktura gleb w wybranych lasach miejskich Wrocławia

Treść / Zawartość

Warianty tytułu

EN
Structure of soils in selected urban forests of Wroclaw

Języki publikacji

PL

Abstrakty

EN
The objective of the research was to assess the soil structure parameters (the index of cloddiness, of pulverization, of soil structure and the mean weighted diameter of soil aggregates – MWDa), as well as the selected chemical soil properties (pH, the content of organic carbon, total nitrogen and available potassium and phosphorus) in the three urban forests in Wrocław (SW Poland) depending on the occurrence of tree species (Quercus robur, Fagus sylvatica, Carpinus betulus). Soil samples were collected under the crown of each tested tree taxons, from three different sites, in three replications, separately in every forest. The soil was taken from two layers: 0−20 cm and 20−40 cm. The structure and weight of mechanically solid soil aggregates were determined using dry separation method. The content of total nitrogen was determined with Kjeldahl method, while phosphorus and potassium – with Egner−Riehm method. Organic carbon was determined with the use of elementary carbon analyser Behr C−50 IRF. The pH was determined by potentiometric method in 1M solution of KCl. The results were statistically analysed using the ANOVA. The correlation coefficient between the mean weighted diameter of soil aggregates and the content of organic carbon in the soil was calculated. The tree species occurring in the urban forests of Wrocław affected the soil structure parameters as well as changed the chemical properties of the soil. In both Mokrzański and Rędziński Forests the significantly higher index of soil cloddiness was observed under hornbeam crowns than in the oak and beech surroundings. In the Osobowicki Forest the highest index of cloddiness was determined on the soil with the oak. In general, higher values of index of soil structure and the mean weighted diameter of soil aggregates were noticed for the hornbeam sites than the oak and the beech ones. There was a significant positive correlation between the MWDa and the content of soil organic matter (r=0.711, Y=0.4569·x+1.6523). The differences in the content of organic carbon depending on tree species were observed in the Rędziński Forest, while in content of total nitrogen also in the Mokrzański Forest. The highest content of organic carbon and nitrogen was noticed in the soil under the hornbeam. The species of trees affected the content of phosphorus and potassium in the soil, but there was no unambiguous direction of changes.

Wydawca

-

Czasopismo

Rocznik

Tom

161

Numer

07

Opis fizyczny

s.592-599,tab.,bibliogr.

Twórcy

  • Katedra Kształtowania Agroekosystemów i Terenów Zieleni, Uniwersytet Przyrodniczy we Wrocławiu, pl.Grunwaldzki 24 A, 50-363 Wrocław
  • Zakład Roślin Ozdobnych i Dendrologii, Uniwersytet Przyrodniczy we Wrocławiu, pl.Grunwaldzki 24 A, 50-363 Wrocław
autor
  • Zakład Roślin Ozdobnych i Dendrologii, Uniwersytet Przyrodniczy we Wrocławiu, pl.Grunwaldzki 24 A, 50-363 Wrocław
  • Katedra Kształtowania Agroekosystemów i Terenów Zieleni, Uniwersytet Przyrodniczy we Wrocławiu, pl.Grunwaldzki 24 A, 50-363 Wrocław

Bibliografia

  • Augusto L., Dupouey J. L., Ranger J. 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann. For. Sci. 60: 823-831.
  • Augusto L., Ranger J., Binkley D., Rothe A. 2002. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 59: 233-253.
  • Barthes B., Roose E. 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion validation at several levels. Catena 47: 133-149.
  • Bronick C. J., Lal R. 2005. Soil structure and management: a review. Geoderma 124: 3-22.
  • Carmean W. H. 1957. The Structure of Forest Soils. Ohio J. Sci. 57 (3): 165-168.
  • Davis M. R. 1990. Chemical composition of soil solutions extracted from New Zealand beech forests and West German beech and spruce forests. Plant Soil 126: 237-246.
  • Degórska B. 2004. Planowanie terenów otwartych w nowej przestrzeni miejskiej (na przykładzie strefy podmiejskiej Warszawy). W: Kistowski M. [red.]. Studia ekologiczno-krajobrazowe w programowaniu rozwoju zrównoważonego. Przegląd polskich doświadczeń u progu integracji z Unią Europejską. Gdańsk. 141-148.
  • Elliott E. T., Anderson R. V., Coleman D. C., Cole C. V. 1980. Habitable pore space and microbial trophic interactions. Oikos 35: 327-335.
  • Franzluebbers A. J. 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Till. Res. 66: 197-205.
  • Graham R. C., Ervin J. O., Wood H. B. 1995. Aggregate stability under oak and pine after four decades of soil development. Soil Sci. Soc. Am. J. 59: 1740-1744.
  • Grieve I. C. 1978. Some effects of the plantation of conifers on a freely drained lowland soil, Forest of Dean, U.K. Forestry 51 (1): 21-28.
  • Hagen-Thorn A., Callesen I., Armolaitis K., Nihlgĺrd B. 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecol. Manag. 195: 373-384.
  • Hu L., Xiang Z., Wang G., Rafique R., Liu W., Wang C. 2016. Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scand. J. Forest Res. 31 (3): 242-253.
  • Jha C. S., Singh J. S. 1990. Composition and dynamics of dry tropical forest in relation to soil texture. J. Veg. Sci. 1: 609-614.
  • Johnson-Maynard J. L., Graham R. C., Wu L., Shouse P. J. 2002. Modification of soil structural and hydraulic properties after 50 years of imposed chaparral and pine vegetation. Geoderma 110: 227-240.
  • Jonczak J. 2011. Struktura, dynamika i właściwości opadu roślinnego w 110-letnim drzewostanie bukowym z domieszką sosny i świerka. Sylwan 155 (11): 760-768.
  • Jóźwiak M., Jóźwiak M. A., Kozłowski R. 2015. Dynamika opadu organicznego na terenie rezerwatu przyrody Jaskinia Raj. Rocz. Świętokrz. Ser. B. 36: 71-84.
  • Kucaba S. 1983. Wpływ składu gatunkowego i zagęszczenia podrostów liściastych w drzewostanie sosnowym na cechy poziomów akumulacji biologicznej. Cz. II. Charakterystyka gleb oraz zawartość składników mineralnych w ściółce i jej podpoziomach. Rocz. Glebozn. 34 (1-2): 209-225.
  • Lal R. 1991. Soil structure and sustainability. J. Sustain. Agr. 1: 67-92.
  • Lenart S. 2008. Wpływ sposobu użytkowania gruntów oraz stosowanej agrotechniki na strukturę gruzełkowatą gleby. Ochr. Środ. Zasob. Natur. 35/36: 173-179.
  • Mardulyn P., Godden B., Amiano-Echezarreta P., Penninckx M., Gruber W., Herbauts J. 1993. Changes in humus microbiologicalactivity induced by the substitution of the natural beech forest by Norway spruce in the Belgian Ardennes. Forest Ecol. Manag. 59: 15-27.
  • Niewinna M. 2010. Wielkość opadu i tempo rozkładu ściółki w wybranych drzewostanach Bieszczadów. Rocz. Bieszcz. 18: 59-73.
  • Osman K. T. 2013. Forest soils: properties and management. In physical properties of forest soils. Springer International Publishing, Switzerland. 19-28.
  • Oszańcy K., Banas A., Chmura U., Gallus A., Królikowska K., Kuczer M., Owczarek-Nowak E., Pawelec T., Pietrasiak J., Kuczer J. 2012. Program ochrony środowiska dla miasta Wrocławia na lata 2012-2015. Projekt. Urząd Miejski Wrocławia, Wrocław.
  • Paluszek J. 2011. Kryteria oceny jakości fizycznej gleb uprawnych Polski. Acta Agrophys., Rozpr. Monogr. 191: 139.
  • Pardo A., Amato M., Chiaranda F. Q. 2000. Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. Eur. J. Agron. 13: 39-45.
  • Passioura J. B. 1991. Soil structure and plant growth. Aust. J. Soil Res. 29 (6): 717-728.
  • Rewut I. B. 1980. Fizyka gleby. PWRiL, Warszawa.
  • Rybicki R. 2006. Zagospodarowanie gruntów zagrożonych erozją w świetle rolnictwa zrównoważonego. Inż. Rol. 6: 231-239.
  • Saetre P. 1998. Decomposition, microbial community structure, and earthworm effects along a birch-spruce soil gradient. Ecology 79: 834-846.
  • Scull P. R., Harman J. R. 2004. Forest distribution and site quality in southern Lower Michigan, USA. J. Biogeogr. 31: 1503-1514.
  • Six J., Bossuyt H., Degryze S., Denef K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79: 7-31
  • Taminnen P., Starr M. 1994. Bulk density of forested mineral soils. Silva Fenn. 28 (1): 53-60.
  • Tebrügge F., Düring R. A. 1999. Reducing tillage intensity – a review of results from a long-term study in Germany. Soil Till. Res. 53: 15-28.
  • Tisdall J. M., Oades J. M. 1982. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 33: 141-163.
  • van Veen J. A., Ladd J. N., Frissel M. J. 1984. Modelling C and N turnover through the microbial biomass in soil. Plant Soil 76: 257-274.
  • White R. E. 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Adv. Soil. Sci. 3: 95-120.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f2caad4e-9b9d-4e56-8c32-b34f15995dc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.