PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 1 |

Tytuł artykułu

Availability of Food for frugivorous bats in lowland Amazonia: The influence of flooding and river banks

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In Neotropical forests fruits are key resources for a great diversity of vertebrates, including many frugivorous bats, but little is known about the factors that determine their availability. We studied forest inundation and river banks as determinants of the spatial variation in the availability of fruits for bats in lowland Amazonia. We sampled the bat assemblage composition, fruit availability, and bat diet in terra firme upland forest and in two types of flooded forest — várzea and igapó. Two distinct frugivore bat guilds were found in both terra firme and flooded forests: (1) canopy frugivores, feeding mainly on Ficus and Cecropia, and (2) understorey frugivores that feed mainly on Vismia and Piper. Fruits consumed by the canopy guild were more abundant in the flooded forests — particularly in the nutrient-rich várzea, but those dominating the understory guild diet were most abundant in terra firme. Availability of both fruit genera most consumed by the canopy guild was greater along river banks than in the forest matrix. For the understory guild, the greater abundance of Vismia along river banks was compensated for by a higher availability of Piper in the matrix. In conclusion, both factors influence the availability of fruits, although differently for the canopy and understory guilds. The resulting differences in fruit abundance may explain variations in bat assemblages of the different forest types. River banks play a particularly important role in providing food for bats of both guilds, but are under particularly heavy human pressure.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

1

Opis fizyczny

p.183-194

Twórcy

autor
  • Departamento de Biologia Animal, Centro de Biologia Ambiental, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa, Portugal
  • Instituto de Desenvolvimento Sustentavel Mamiraua, 69470-000 Tefe, Amazonas, Brazil
  • Departamento de Biologia Animal, Centro de Biologia Ambiental, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa, Portugal
  • Departamento de Biologia e Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
  • Instituto de Desenvolvimento Sustentavel Mamiraua, 69470-000 Tefe, Amazonas, Brazil
  • Departamento de Biologia Animal, Centro de Biologia Ambiental, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Bibliografia

  • 1. L. M. S. Aguiar , and J. Marinho-Filho . 2007. Bat frugivory in a remnant of Southeastern Brazilian Atlantic Forest. Acta Chiropterologica, 9: 251–260. Google Scholar
  • 2. J. M. Ayres 1993. As matas de várzea do Mamirauá: Médio Rio Solimões. CNPq/Sociedade Civil Mamirauá, Brazil, 123 pp. Google Scholar
  • 3. S. A. Banack , M. H. Horn , and A. Gawlicka . 2002. Disperser- vs. establishment-limited distribution of a riparian fig tree (Ficus insipida) in a Costa Rican tropical rain forest. Biotropica, 34: 232–243. Google Scholar
  • 4. A. A. Barnett , E. M. Sampaio , E. K. V. Kalko , R. L. Shapley , E. Fischer , G. Camargo , and B. Rodriguez-Herrera . 2006. Bats of Jaú National Park, Central Amazonia, Brazil. Acta Chiropterologica, 8: 103–128. Google Scholar
  • 5. E. Bernard 2001. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. Journal of Tropical Ecology, 17: 115–126. Google Scholar
  • 6. E. Bernard 2002. Diet, activity and reproduction of bat species (Mammalia, Chiroptera) in Central Amazonia, Brazil. Revista Brasileira de Zoologia, 19: 173–188. Google Scholar
  • 7. E. Bernard , and M. B. Fenton . 2003. Bat mobility and roosts in a fragmented landscape in Central Amazonia, Brazil. Biotropica, 35: 262–277. Google Scholar
  • 8. R. E. Bodmer 1990. Responses of ungulates to seasonal inundations in the Amazon floodplain. Journal of Tropical Ecology, 6: 191–201. Google Scholar
  • 9. F. J. Bonaccorso 1979. Foraging and reproductive ecology in a Panamian bat community. Bulletin of the Florida State Museum, Biological Sciences, 24: 359–408. Google Scholar
  • 10. F. J. Bonaccorso , J. R. Winkelmann , D. Shin , C. I. Agrawal , N. Aslami , C. Bonney , A. Hsu , P. E. Jeklelek , A. K. Knox , S. J. Kopach , et al. 2007. Evidence for exploitative competition: comparative foraging behavior and roosting ecology of short-tailed fruit bats (Phyllostomidae). Biotropica, 39: 249–256. Google Scholar
  • 11. F. Bongers , P. J. Van Der Meer , and M. Théry . 2001. Scales of ambient light variation. Pp. 19–30, in Nouragues: dynamics of animal-plant interactions in a Neotropical rainforest ( F. Bongers , P. Charles-Dominique , P.-M. Forchet , and M. Théry , eds.). Kluwer Academic Publishers, Dordrecht, The Netherlands, 421 pp. Google Scholar
  • 12. S. H. Borges , and A. Carvalhaes . 2000. Bird species of black water inundation forests in the Jaú National Park (Amazonas state, Brazil): their contribution to regional species richness. Biodiversity and Conservation, 9: 201–214. Google Scholar
  • 13. M. Delaval , and P. Charles-Dominique . 2006. Edge effects on frugivorous and nectarivorous bat communities in a Neotropical primary forest in French Guiana. Revue d'Ecologie: La Terre et la Vie, 61: 343–352. Google Scholar
  • 14. M. Delaval , M. Henry , and P. Charles-Dominique . 2005. Interspecific competition and niche partitioning: example of a Neotropical rainforest bat community. Revue d'Ecologie: La Terre et la Vie, 60: 149–165. Google Scholar
  • 15. L. V. Ferreira 2000. Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodiversity and Conservation, 9: 1–14. Google Scholar
  • 16. T. H. Fleming 1988. The short-tailed fruit bat: a study in animal plant interactions. University of Chicago Press, Chicago, 365 pp. Google Scholar
  • 17. T. H. Fleming 2004. Dispersal ecology of Neotropical Piper shrubs and treelets. Pp. 58–77, in Piper : a model genus for studies of phytochemistry, ecology, and evolution ( L. A. Dyer and A. D. N. Palmer , eds.). Kluwer Academic, New York, 214 pp. Google Scholar
  • 18. T. H. Fleming , E. T. Hooper , and D. E. Wilson . 1972. Three Central American bat communities: structure, reproductive cycles, and movement patterns. Ecology, 53: 556–569. Google Scholar
  • 19. T. H. Fleming , R. Breitwisch , and G. H. Whitesides . 1987. Patterns of tropical vertebrate frugivore diversity. Annual Review of Ecology and Systematics, 18: 91–109. Google Scholar
  • 20. K. Furch 1997. Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. Pp. 47–67, in The Central Amazon floodplain ( W. J. Junk , ed.). Springer-Verlag, Berlin, Germany, 548 pp. Google Scholar
  • 21. A. H. Gentry 1990. Floristic similarities and differences between southern Central America and upper and central Amazonia. Pp. 141–160, in Four Neotropical rain forests ( A. H. Gentry , ed.). Yale University Press, Yale, 640 pp. Google Scholar
  • 22. N. P. Giannini , and E. K. V. Kalko . 2004. Trophic structure in a large assemblage of Phyllostomid bats in Panama. Oikos, 105: 209–220. Google Scholar
  • 23. D. L. Gorchov , F. Cornejo , C. F. Ascorra , and M. Jaramillo . 1995. Dietary overlap between frugivorous birds and bats in the Peruvian Amazon. Oikos, 74: 235–250. Google Scholar
  • 24. O. Hammer , D. A. T. Harper , and P. D. Ryan . 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1–9. Google Scholar
  • 25. G. S. Hartshorn 1978. Tree falls and tropical forest dynamics. Pp. 617–638, in Tropical trees as living systems ( P. B. Tomlinson and M. H. Zimmermann , eds.). Cambridge University Press, Cambridge, UK, 544 pp. Google Scholar
  • 26. T. Haugaasen , and C. A. Peres . 2006. Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio PurÚs region of central Amazonia, Brazil. Acta Amazonica, 36: 25–36. Google Scholar
  • 27. T. Haugaasen , and C. A. Peres . 2007. Vertebrate responses to fruit production in Amazonian flooded and unflooded forests. Biodiversity and Conservation, 16: 4165–4190. Google Scholar
  • 28. M. Henry , J.-M. Pons , and J.-F. Cosson . 2007. Foraging behaviour of a frugivorous bat helps bridge landscape connectivity and ecological processes in a fragmented rainforest. Journal of Animal Ecology, 76: 801–813. Google Scholar
  • 29. S. H. Hurlbert 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54: 187–211. Google Scholar
  • 30. G. Irion , W. J. Junk , and J. A. S. N. Mello . 1997. The large central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. Pp. 23–46, in The Central Amazon floodplain ( W. J. Junk , ed.). Springer-Verlag, Berlin, Germany, 548 pp. Google Scholar
  • 31. P. Jordano 2000. Fruits and frugivory. Pp. 125–166, in Seeds: the ecology of regeneration in plant communities ( M. Feener , ed.). CABI Publisher, Wallingford, UK, 410 pp. Google Scholar
  • 32. R. Kalliola , J. Salo , M. Puhakka , and M. Rajasilta . 1991. New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. Journal of Ecology, 79: 877–901. Google Scholar
  • 33. K. Kubitzki , and A. Ziburski . 1994. Seed dispersal in floodplain forests of Amazonia. Biotropica, 26: 30–43. Google Scholar
  • 34. T. Kunz , M. Fujita , A. Brooke , and G. Mccracken . 1994. Tent architecture and convergence in tent-making behavior among Neotropical and paleotropical bats. Journal of Mammalian Evolution, 2: 57–58. Google Scholar
  • 35. A. Kurta , G. P. Bell , K. A. Nagy , and T. H. Kunz . 1989. Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiological Zoology, 62: 804–818. Google Scholar
  • 36. B. S. Law 1995. The effect of energy supplementation on the local abundance of the common blossom bat, Syconycteris australis, in South-Eastern Australia. Oikos, 72: 42–50. Google Scholar
  • 37. T. O. Lemke 1984. Foraging ecology of the long-nosed bat, Glossophaga soricina, with respect to resource availability. Ecology, 65:538–548. Google Scholar
  • 38. B. K. Lim , and M. D. Engstrom . 2001. Species diversity of bats (Mammalia: Chiroptera) in Iwokrama Forest, Guyana, and the Guianan subregion: implications for conservation. Biodiversity and Conservation, 10: 613–657. Google Scholar
  • 39. T. A. Lobova , C. K. Geiselman , and S. A. Mori . 2009. Seed dispersal by bats in the Neotropics. New York Botanical Garden Press, New York, 465 pp. Google Scholar
  • 40. J. E. Lopez , and C. Vaughan . 2004. Observations on the role of frugivorous bats as seed dispersers in Costa Rican secondary humid forests. Acta Chiropterologica, 6: 111–119. Google Scholar
  • 41. J. M. Martnho-Filho , and I. Sazima . 1998. Brazilian bats and conservation biology: a first survey. Pp. 282–294, in Bat biology and conservation ( T. H. Kunz and P. A. Racey , eds.). Smithsonian Institution Press, Washington D.C., 365 pp. Google Scholar
  • 42. R. J. Marquis 2004. Biogeography of Neotropical Piper. Pp. 78–96, in Piper : a model genus for studies of phytochemistry, ecology, and evolution ( L. A. Dyer and A. D. N. Palmer , eds.). Kluwer Academic, New York, 214 pp. Google Scholar
  • 43. B. K. McNab 1986. The influence of food habits on the energetics of eutherian mammals. Ecological Monographs, 56: 1–19. Google Scholar
  • 44. A. Medina , C. A. Harvey , D. S. Merlo , S. Vílchez , and B. Hernandez . 2007. Bat diversity and movement in an agricultural landscape in MatiguÁs, Nicaragua. Biotropica, 39: 120–128. Google Scholar
  • 45. C. F. J. Meyer , M. Weinbeer , and E. K. V. Kalko . 2005. Home-range size and spacing patterns of Macrophyllum macrophyllum (Phyllostomidae) foraging over water. Journal of Mammalogy, 86: 587–598. Google Scholar
  • 46. D. W. Morrison 1978. Influence of habitat on the foraging distances of the fruit bat, Artibeus jamaicensis. Journal of Mammalogy, 59: 622–624. Google Scholar
  • 47. R. Muscarella , and T. H. Fleming . 2007. The role of frugivorous bats in tropical forest succession. Biological Reviews of the Cambridge Philosophical Society, 82: 73–590. Google Scholar
  • 48. R. W. Myster 2009. Plant communities of Western Amazonia. The Botanical Review, 75: 271–291. Google Scholar
  • 49. J. M. Palmeirim , and K. Etheridge . 1985. The influence of man-made trails on foraging by tropical frugivorous bats. Biotropica, 17: 82–83. Google Scholar
  • 50. J. M. Palmeirim , D. L. Gorchov , and S. Stoleson . 1989. Trophic structure of a Neotropical frugivore community: is there competition between birds and bats? Oecologia, 79: 403–411. Google Scholar
  • 51. P. Parolin , F. Wittmann , W. J. Junk , A. C. Oliveira , and M. T. F. Piedade . 2002. Pioneer trees in Amazonian floodplains: three key species form monospecific stands in different habitats. Folia Geobotanica, 37: 225–238. Google Scholar
  • 52. J. M. A. Peixoto , B. W. Nelson , and F. Wittmann . 2009. Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sensing of Environment, 113: 2258–2266. Google Scholar
  • 53. C. A. Peres 1994. Primate responses to phenological changes in an Amazonian terra firme forest. Biotropica, 26: 98–112. Google Scholar
  • 54. T. G. Prance 1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonnia, 31: 26–38. Google Scholar
  • 55. R Development Core Team, 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org . Google Scholar
  • 56. M. J. Ramos Pereira , J. T. Marques , J. Santana , C. D. Santos , J. Valsecchi , H. L. De Queiroz , P. Beja , and J. M. Palmeirim . 2009. Structuring of Amazonian bat assemblages: the roles of flooding patterns and floodwater nutrient load. Journal of Animal Ecology, 78: 1163–1171. Google Scholar
  • 57. M. J. Ramos Pereira , J. T. Marques , and J. M. Palmeirim . 2010a. Ecological responses of frugivorous bats to seasonal fluctuation in fruit availability in Amazonian forests. Biotropica, 42: 680–687. Google Scholar
  • 58. M. J. Ramos Pereira , J. T. Marques , and J. M. Palmeirim . 2010b. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests. Current Zoology, 56: 469–478. Google Scholar
  • 59. K. Rex , D. H. Kelm , K. Wiesner , T. H. Kunz , and C. C. Voigt . 2008. Species richness and structure of three Neotropical bat assemblages. Biological Journal of the Linnean Society, 94: 617–629. Google Scholar
  • 60. J. Salo , R. Kalliola , I. Hakkinen , Y. Makinen , P. Niemela , M. Puhakka , and P. D. Coley . 1986. River dynamics and the diversity of Amazon lowland forest. Nature, 322: 254–258. Google Scholar
  • 61. E. M. Sampaio , E. K. V. Kalko , E. Bernard , and B. Rodriguez-Herrera . 2003. A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest of Central Amazonia, including methodological and conservation considerations. Studies on Neotropical Fauna and Environment, 38: 17–31. Google Scholar
  • 62. J. Schöngart , F. Wittmann , M. Worbes , M. T. F. Piedade , H.-J. Krambeck , and W. J. Junk . 2007. Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Annals of Forest Science, 64: 657–664. Google Scholar
  • 63. M. Shanahan , and S. G. Compton . 2001. Vertical stratification of figs and fig-eaters in a Bornean lowland rain forest: how is the canopy different? Plant Ecology, 153: 121–132. Google Scholar
  • 64. M. Shanahan , S. So , S. G. Compton , and R. Gorlett . 2001. Fig-eating by vertebrate frugivores: a global review. Biological Reviews, 76: 529–572. Google Scholar
  • 65. N. B. Simmons , and R. S. Voss . 1998. The mammals of Paracou, French Guyana: a Neotropical lowland rainforest fauna. Part 1. Bats. Bulletin American Museum of Natural History, 237: 3–219. Google Scholar
  • 66. R. C. Teixeira , C. E. Correa , and E. Fischer . 2009. Frugivory by Artibeus jamaicensis (Phyllostomidae) bats in the Pantanal, Brazil. Studies on Neotropical Fauna and Environment, 44: 7–15. Google Scholar
  • 67. W. Thies , and E. K. V. Kalko . 2004. Phenology of Neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos, 104: 362–376. Google Scholar
  • 68. M. G. M. Van Roosmalen 1985. Fruits of the Guianan flora. Institute of Systematic Botany, Utrecht University, Utrecht, The Netherlands, 483 pp. Google Scholar
  • 69. C. P. Van Schaik , J. W. Terborgh , and S. J. Wright . 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24: 353–377. Google Scholar
  • 70. J. A. Vargas-Contreras , R. A. MedellÍN , G. Escalona-Segura , and L. Interian-Sosa . 2009. Vegetation complexity and bat-plant dispersal in Calakmul, Mexico. Journal of Natural History, 43: 219–243. Google Scholar
  • 71. J. Wang , W. Gao , L. Wang , W. Metzner , J. Ma , and J. Feng . 2010. Seasonal variation in prey abundance influences habitat use by greater horseshoe bats (Rhinolophus ferrumequinum) in a temperate deciduous forest. Canadian Journal of Zoology, 88: 315–323. Google Scholar
  • 72. M. C. Wendeln , J. R. Runkle , and E. K. V. Kalko . 2000. Nutritional values of 14 fig species and bat feeding preferences in Panama. Biotropica, 32: 489–501. Google Scholar
  • 73. T. Whittaker , and S. Jones . 1994. The role of frugivorous bats and birds in the rebuilding of a tropical forest ecosystem, Krakatau, Indonesia. Journal of Biogeography, 21: 245–258. Google Scholar
  • 74. M. R. Willig , S. J. Presley , C. P. Bloch , C. L. Hice , S. P. Yanoviak , M. M. Diaz , L. A. Chauca , V. Pacheco , and S. C. Weaver 2007. Phyllostomid bats of lowland Amazonia: effects of habitat alteration on abundance. Biotropica, 39: 737–746. Google Scholar
  • 75. A. Zuur , E. N. Ieno , and G. M. Smith . 2007. Analysing ecological data. Springer-Verlag. New York, xxvi + 672 pp. Google Scholar

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f254759b-3caf-492e-a3da-5be62ac6f81f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.