PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 29 | 4 |

Tytuł artykułu

Growth of selected fungi on biodegradable films

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study presents the data summary on growth speed of selected species of fungi on some of biodegradable polymer materials. Growth speed was assessed on films composed of poly(lactide), poly(ε-caprolactone) and poly(hydroxybutyrate) after a month of incubation in 24oC. To assess growth of fungi optical microscopy on densitometric measurements were used. Through these analyses the best growth was confirmed for fungus: Chaetomium globosum (ATTC 6205) on a film made of poly(ε -caprolactone).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

29

Numer

4

Opis fizyczny

p.63-68,fig.,ref.

Twórcy

autor
  • Institute for Engineering of Polymer Materials and Dyes, 55 M.Sklodowskiej-Curie St., 87-100 Torun, Poland
  • Chair of Physical Chemistry and Physicochemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 St, 87-100 Torun, Poland
autor
  • Chair of Physical Chemistry and Physicochemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 St, 87-100 Torun, Poland

Bibliografia

  • Adamska E. & Deptuła M., 2015a, Epigenist lichens of different development stages of forest growing on the heathland. Ecological Questions 21: 39–44.
  • Adamska E. & Deptuła M., 2015b, Materials for biota of lichens and lichenicolous fungi in the military area near Toruń, Poland. Ecological Questions 21: 45–53.
  • Adamska E., Deptuła M., Filbrandt-Czaja A., Kamiński D., Lewandowska-Czarnecka A., Nienartowicz A. & Sewerniak P., 2015, Heathlands and associated communities in Kujawy and Pomerania: management, treatment and conservation. Towarzystwo Naukowe w Toruniu, Toruń.
  • Apetrei R-M., Carac G., Bahrim G., Ramanaviciene A. & Ramanavicius A., 2018, Modification of Aspergillus niger by conducting polymer, Polypyrrole, and the evaluation of electrochemical properties of modified cells. Bioelectrochemistry 121: 46–55.
  • Araceli L.T., Gilberto G., Abraham V.T., Raúl R.H. & Cristóbal N.A., 2011, Polyurethane foam as substrate for fungal strains. Advances in Bioscience and Biotechnology 2: 52–58.
  • Barnharst T., Rajendran A. & Hu B., 2018, Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm. International Biodeterioration & Biodegradation 126: 131–142.
  • Dey U., Mondal N.K., Das K. & Dutta S., 2012, An approach to polymer degradation through microbes. IOSR Journal of Pharmacy 2(3): 385–388.
  • Gibas E. & Richert A., 2018, Ocena oddziaływania grzybów na folie oksy-degradowalne z biocydami, [w:] Polimery i Kompozyty Konstrukcyjne 2018, XVII Międzynarodowa Konferencja Naukowo-Techniczna, Szczyrk. [Evaluation of the impact of mushrooms on the oxy-degradable films with biocides], [in:] Polymers and Structural Composites, 17th Internationl Scientific and Technical Conference, Szczyrk]. Stowarzyszenie Wychowanków Politechniki Śląskiej, Koło Materiałów Polimerowych i Metalowych w Gliwicach, Gliwice: 28.
  • Hakkarainem M., Karlsson S. & Albertsson A.C., 2000, Rapid (bio) degradation of polylactide by mixes culture of compost microorganisms-low molecular weight products and matrix changes. Polymer 41, 2331–2338.
  • Janczak K., Dąbrowska G., Hrynkiewicz K., Raszkowska-Kaczor A. & Richert A., 2014, Selekcja grzybów zdolnych do wzrostu na tworzywach polimerowych [w:] Mikrobiologia i Ochrona Środowiska, 48 Międzynarodowe Sympozjum, Warszawa [Selection of the fungi capable to growth on plastics, [in:] Microbiology and Environmental Protection, 48th International Symposium, Warsaw]. Urząd Marszałkowski Województwa Mazowieckiego, Warszawa: 55-56.
  • Jayasekara R., Harding I., Bowater I. & Lonergan G., 2005, Biodegradability of selected range of polymers an polymer blends and standard methods for assessment of biodegradation. Journal of Polymers and the Environment 13: 231–51.
  • Kumar S., Hatha A.A.M. & Christi K.S., 2007, Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Revista De Biologia Tropical 55(3-4): 777–786.
  • Levinskaitė L., 2018, Biodegradation Potential of Fungi Penicillium Isolated from Synthetic Polymeric Materials. Journal of Environmental Engineering 144(7), art. no. 06018002. [DOI: 10.1061/(ASCE)EE.1943-7870.0001391].
  • Libudisz Z., Kowal K. & Żakowska Z., 2009, Mikrobiologia techniczna. Mikroorganizmy i środowiska ich występowania [Technical microbiology. Microorganisms and their environments]. Wydawnictwo PWN, Warszawa.
  • Manna A. & Paul A.K., 2000, Degradation of microbial poliester poly(3-hydroxybuterate) in envirommental samples and in culture. Biodegradation 11: 323–329.
  • Morawska M. & Krasowska K., 2017, Degradability of polylactide films by commercial microbiological preparations for household composters. Polish Journal of Chemical Technology 19(3): 44–48.
  • Nishida H. & Tokiwa Y., 1993, Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments. Journal of Environmental Polymer Degradation 1(3): 227–233.
  • PN EN ISO 846, 2014, Tworzywa sztuczne. Ocena działania mikroorganizmów [Plastics. Evaluation of the action of microorganisms].
  • PN EN 15457, 2014, Farby i Lakiery. Laboratoryjna metoda badania skuteczności w powłoce środków ochrony powłok przed grzybami [Paints and varnishes - Laboratory method for testing the effectiveness of the coating protective coating against fungi].
  • Qi X., Ren Y. & Wang X., 2017, New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration & Biodegradation 117: 215–223.
  • Redlak K., Dahm H., Ciesielska A. & Strzelczyk E., 2001, Enzymatic activity of ectendomycorrhizal fungi. Biology and Fertility of Soils 33: 83–90.
  • Rhim J.W., Hong S.I. & Ha C.S., 2009, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science and Technology 42: 612–617.
  • Richert A., 2017, Właściwości strukturalne i barierowe folii polilaktydowych z bakteriocynami po biodegradacji w ekstrakcie z kompostu [Structural and barrier properties of polylactide films with bacteriocins after biodegradation in a compost extract]. Przemysł Chemiczny 96/6: 1313–1316.
  • Shah A.A., Hasan F., Hameed A. & Ahmed S., 2008, Biological degradation of plastics: A comprehensive review. Biotechnology Advanced 26: 246–265.
  • Shogren R., 1997, Water Vapor Permeability of Biodegradable Polymers. Journal of Environmental Polymer Degradation 2: 91–95.
  • Strömberg E. & Karlsson S., 2009, The effect of biodegradation on surface and bulk property changes of polypropylene, recycled polypropylene and polylactide biocomposite. International Biodeterioration & Biodegradation 63: 1045–1053.
  • Tokiwa Y. & Calabia B.P., 2006, Biodegradability and biodegradation of poly(lactide). Appied Microbiology and Biotechnology 72(2): 244–251.
  • Torres A., Li S.M., Roussos S. & Vert M., 1996, Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers Applied and Environmental Microbiology 62: 2393–2397.
  • Tsji H., Echizen Y. & Nishimura Y., 2006, Enzymatic degradation of poly(L-Lactid Acid): Effects of UV irradiation. Journal of Polymers and the Environment 14: 239–248.
  • Wada Y., Seko N., Nagasawb N., Tamada M., Kasuya K.I. & Mitomo H., 2007, Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification. Radiation Physics and Chemistry 76: 1075–1083.
  • Żakowska H., Degradowalne opakowania z klasycznych tworzyw sztucznych, a opakowania kompostowalne z polimerów biodegradowalnych [Degradable packaging from classic plastics, and compostable packaging from biodegradable polymers]. Opakowanie 6: 20–25.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f1fbc84c-b1af-41eb-b189-7255c0b9710a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.