PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 3 |

Tytuł artykułu

miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

p.483-499,fig.,ref.

Twórcy

autor
  • Department of Biology, Science and Research Branch, Islamic Azad University, Fars, Iran
  • Transplant Research Center, Shiraz University of Medical Science, Zand Street, Nemazi Hospital, Postal Code: 7193711351, Shiraz, Iran
autor
  • Transplant Research Center, Shiraz University of Medical Science, Zand Street, Nemazi Hospital, Postal Code: 7193711351, Shiraz, Iran
autor
  • Department of Biology, Science and Research Branch, Islamic Azad University, Fars, Iran
  • Transplant Research Center, Shiraz University of Medical Science, Zand Street, Nemazi Hospital, Postal Code: 7193711351, Shiraz, Iran
autor
  • Transplant Research Center, Shiraz University of Medical Science, Zand Street, Nemazi Hospital, Postal Code: 7193711351, Shiraz, Iran
autor
  • Department of Biology, Kazeroon Branch, Islamic Azad University, Kazeroon, Iran

Bibliografia

  • 1.Cabrera, O., Berman, D.M., Kenyon, N.S., Ricordi, C., Berggren, P.O. and Caicedo, A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103 (2006) 2334–2339.
  • 2. Yesil, P. and Lammert, E. Islet dynamics: a glimpse at beta cell proliferation. Histol. Histopathol. 23 (2008) 883–895.
  • 3. Warnock, G.L., Kneteman, N.M., Ryan, E.A., Evans, M.G., Seelis, R.E., Halloran, P.F., Rabinovitch, A. and Rajotte, R.V. Continued function of pancreatic islets after transplantation in type I diabetes. Lancet 2 (1989) 570–572.
  • 4. Warnock, G.L., Liao, Y.H., Wang, X., Ou, D., Ao, Z., Johnson, J.D., Verchere, C.B. and Thompson, D. An odyssey of islet transplantation for therapy of type 1 diabetes. World J. Surg. 31 (2007) 1569–1576.
  • 5. Thompson, D.M., Meloche, M., Ao, Z., Paty, B., Keown, P., Shapiro, R.J., Ho, S., Worsley, D., Fung, M., Meneilly, G., Begg, I. Al., Mehthel, M., Kondi, J., Harris, C., Fensom, B., Kozak, S.E., Tong, S.O., Trinh, M. and Warnock, G.L. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation 91 (2011) 373–378.
  • 6. Fung, M.A., Warnock, G.L., Ao, Z., Keown, P., Meloche, M., Shapiro, R.J., Ho, S., Worsley, D., Meneilly, G.S., Ghofaili, K., Kozak, S.E., Tong, S.O., Trinh, M., Blackburn, L., Kozak, R.M., Fensom, B.A. and Thompson, D.M. The effect of medical therapy and islet cell transplantation on diabetic nephropathy: an interim report. Transplantation 84 (2007) 17–22.
  • 7. Thompson, D.M., Begg, I.S., Harris, C., Ao, Z., Fung, M.A., Meloche, R.M., Keown, P., Meneilly, G.S., Shapiro, R.J., Ho, S., Dawson, K.G., Al, Ghofaili, K.A.l., Riyami, L., Al, Mehthel, M., Kozak, S.E., Tong, S.O. and Warnock, G.L. Reduced progression of diabetic retinopathy after islet cell transplantation compared with intensive medical therapy. Transplantation 85 (2008) 1400–1405.
  • 8. Warnock, G.L., Meloche, R.M., Thompson, D., Shapiro, R.J., Fung, M., Ao, Z., Ho, S., He, Z., Dai, L.J., Young, L., Blackburn, L., Kozak, S., Kim, P.T., Al-Adra D., Johnson, J.D., Liao, Y.H., Elliott, T. and Verchere, C.B. Improved human pancreatic islet isolation for a prospective cohort study of islet transplantation vs best medical therapy in type 1 diabetes mellitus. Arch. Surg. 140 (2005) 735–744.
  • 9. Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M. and Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343 (2000) 230–238.
  • 10. Johnson, J.D., Ao, Z., Ao, P., Li, H., Dai, L.J., He, Z., Tee, M., Potter, K.J., Klimek, A.M., Meloche, R.M., Thompson, D.M., Verchere, C.B. and Warnock, G.L. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant. 18 (2009) 833–845.
  • 11. Marappagounder, D., Somasundaram, I., Dorairaj, S. and Sankaran, R.J. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell. Mol. Biol. Lett. 18 (2013) 75–88.
  • 12. Harasymiak-Krzyżanowska, I., Niedojadło, A., Karwat, J., Kotuła, L., GilKulik, P., Sawiuk, M. and Kocki, J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell. Mol. Biol. Lett. 18 (2013) 479–493.
  • 13. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S. and Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433 (2005) 769–773.
  • 14. Bartel, D.P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116 (2004) 281–297.
  • 15. Stefani, G. and Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9 (2008) 219–230.
  • 16. Ambros, V. microRNAs: tiny regulators with great potential. Cell 107 (2001) 823–826.
  • 17. Smallridge, R. A small fortune. Nat. Rev. Mol. Cell Biol. 2 (2001) 867.
  • 18. Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F., Moulton, J.D. and Plasterk, R.H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5 (2007) e203.
  • 19. Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, G.A. and Van, Obberghen, E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem. 282 (2007) 19575–19588.
  • 20. Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. and Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432 (2004) 226–230.
  • 21. Gauthier, B.R. and Wollheim, C.B. MicroRNAs: ribo-regulators’ of glucose homeostasis. Nat. Med. 12 (2006) 36–38.
  • 22. Cuellar, T.L. and McManus, M.T. MicroRNAs and endocrine biology. J. Endocrinol. 187 (2005) 327–332.
  • 23. Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., Zhang, Y., Yang, B. and Wang, Z. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J. Biol. Chem. 282 (2007) 12363–12367.
  • 24. Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J. and Natarajan, R. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 104 (2007) 3432–3437.
  • 25. Tang, X., Tang, G. and Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta 1779 (2008) 697–701.
  • 26. Keller, D.M., McWeeney, S., Arsenlis, A., Drouin, J., Wright, C.V., Wang, H., Wollheim, C.B., White, P., Kaestner, K.H. and Goodman, R.H. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J. Biol. Chem. 282 (2007) 32084–32092.
  • 27. Yu, X.X., Shi, Y.A., Xin, Y., Zhang, L.H., Li, Y.L. and Wu, S. Biologic characteristics of rat bone marrow mesenchymal stem cells cultured in vitro. Zhonghua Bing Li Xue Za Zhi 36 (2007) 550–554.
  • 28. Marcus, A.J., Coyne, T.M., Rauch, J., Woodbury, D. and Black, I.B. Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76 (2008) 130–144.
  • 29. Latif, Z.A., Noel, J. and Alejandro, R.A. Simple method of staining fresh and cultured islets. Transplantation 45 (1988) 827–830.
  • 30. Wei, R., Yang, J., Liu, G.Q., Gao, M.J., Hou, W.F., Zhang, L., Gao, H.W., Liu, Y., Chen, G.A. and Hong, T.P. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulinproducing cells. Gene 518 (2013) 246–255.
  • 31. Le, Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., Ljungman, P., Lönnies, H., Nava, S. and Ringdén, O. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21 (2008) 1733–1738.
  • 32. Macmillan, M.L., Blazar, B.R., DeFor, T.E. and Wagner, J.E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 43 (2009) 447–454.
  • 33. Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., Izzi, L., Camussi, G. and Forni, M. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One 6 (2011) 28175.
  • 34. Moshtagh, P.R., Emami, S.H. and Sharifi, A.M. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J. Physiol. Biochem. 69 (2013) 451–458.
  • 35. Kadam, S., Muthyala, S., Nair, P. and Bhonde, R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev. Diabet. Stud. 7 (2012) 168–182.
  • 36. Talebi, S., Aleyasin, A., Soleimani, M. and Massumi, M. Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Biotechnol. Appl. Biochem. 59 (2012) 205–212.
  • 37. Ivey, K.N. and Srivastava, D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 7 (2010) 36–41.
  • 38. Yi, R. and Fuchs, E. MicroRNAs and their roles in mammalian stem cells. J. Cell Sci. 124 (2011) 1775–1783.
  • 39. Bravo-Egana, V., Rosero, S., Molano, R.D., Pileggi, A., Ricordi, C., Domínguez-Bendala, J. and Pastori, R.L. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun. 366 (2008) 922–926.
  • 40. Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., Harfe, B.D. and German, M.S. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56 (2007) 2938–2945.
  • 41. Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M. and Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA 106 (2009) 5813–5818.
  • 42. Joglekar, M.V., Joglekar, V.M. and Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr. Patterns 9 (2009) 109–113.
  • 43. Correa-Medina, M., Bravo-Egana, V., Rosero, S., Ricordi, C., Edlund, H., Diez, J. and Pastori, R. L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns 9 (2009) 193–199.
  • 44. Murtaugh, L.C. Pancreas and beta-cell development: from the actual to the possible. Development 134 (2007) 427–438.
  • 45. Oliver-Krasinski, J.M. and Stoffers, D.A. On the origin of the β cell. Genes Dev. 22 (2008) 1998–2021.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f1f8f691-d5b1-4622-987d-738e65f718fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.