PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

The effect of magnetized water on the growth and physiological conditions of Moringa Species under drought stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Magnetic water technology is supposed to be an eco-friendly tool used for alleviating drought stress in the agricultural sector. The present study investigates the role of magnetized water on the two Moringa species (Moringa oleifera and Moringa peregrina) under drought stress. The experiments were conducted in a greenhouse to compare three watering regimes, including, 100% field capacity (FC, as Control), 50% field capacity (FC, as moderate drought stress), and 20% field capacity (FC, as severe drought stress), and two water treatments (normal water and magnetic water). Significant reductions in plant height, leaf area, relative water content (RWC), chlorophyll and ion contents, assimilation rate (A), transpiration (E), stomatal conductance (gs), water use efficiency (WUE), and vapor pressure deficit (VPD) were observed during the drought stress. M. oleifera and M. peregrina seedlings when treated with MW during SS level, exhibited 13.09%, 21.1%, 22.6%, 23%, and 10.7%,15.2%,12.9% ,13.19% decreases in Chl a, Chl b, Chl (a+b) and carotenoids contents respectively, as compared to control seedlings. The M. oleifera and M. peregrina seedlings exposed to drought stress (MS, SS) showed 1.26%, 3.79%, and 1.2%, 3.7% decreases in Fv /Fm under MWT. The drought-stressed seedlings treated with magnetic water (MW) recovered from growth inhibition, chlorosis, and ion disruption. Magnetic water (MW) improved the Na⁺/K⁺ ratio by lowering the accumulation of Na⁺ ions. Hence, the application of magnetized water (MW) mitigated the adverse effects of drought in the Moringa species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1145-1155,fig.,ref.

Twórcy

autor
  • Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Bibliografia

  • 1. CECCARELLI S., GRANDO S., MAATOUGUI M., MICHAEL M., SLASH M., HAGHPARAST R., RAHMANIAN M., TAHERI A., AL-YASSIN A., BENBELKACEM A., LABDI M., MIMOUN H., NACHIT M. Plant breeding and climate changes. J. Agric. Sci. 148 (6), 627, 2010.
  • 2. MISHRA A.K., SINGH V.P. A review of drought concepts. J. Hydro. 391 (1-2), 202, 2010.
  • 3. NAHAR K., HASANUZZAMAN M., ALAM M.M., FUJITA M. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defense and methylglyoxal detoxification systems. AoB PLANTS. 7, plv069, 2015.
  • 4. BEGCY K., MARIANO E.D., GENTILE A., LEMBKE C.G., ZINGARETTI S.M., SOUZA G.M., MENOSSI M. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One. 7, e44697, 2012.
  • 5. KHAN A., ANWAR Y., HASAN M.M., IQBAL A., ALI M., ALHARBY H.F., HAKEEM K.R., HASANUZZAMAN M. Attenuation of Drought Stress in Brassica Seedlings with exogenous application of Ca²⁺ and H₂O₂. Plants. 6, 20, 2017.
  • 6. MEDEIROS D.B., SILVA E.C.D., NOGUEIRA R.J.M.C., TEIXEIRA M.M., BUCKERIDGE M.S. Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical Exp. Plant Physiol. 25 (3), 213, 2013.
  • 7. SILVA E.C., ALBUQUERQUE M.B., AZEVEDO N.A.D., SILVA J.C.D. Drought and its consequences to plants from individual to ecosystem. In: Şener Akıncı, editor. Responses of organisms to water stress. Tech, Croatia, 1, 17, 2013.
  • 8. RAO K.S., LAXMAN R.H., SHIVASHANKARA R.H. Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In: Srinivasa Rao. Abiotic Stress Physiology of Horticultural Crops. Springer, Delhi, India, 1, 3, 2016.
  • 9. KHALILI M., NAGHAVI M.R. Proteins involved in the molecular mechanisms of plant photosynthesis under drought stress. Int. J. Agric. Biosci. 6 (1), 42, 2017.
  • 10. ZANDALINAS S.I., MITTLER R., BALFAGÓN D., ARBONA V., GÓMEZ-CADENAS A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plantarum. 162 (1), 2, 2017.
  • 11. WANG B., LI Z., ENEJI E., TIAN X., ZHAI Z., LI J., DUAN L. Effects of coronatine on growth, gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in Maize (Zea mays L.) seedlings under simulated drought stress. Plant Produc. Sci. 11 (3), 67, 2008.
  • 12. GRAÇA J.P., RODRIGUES F.A., FARIAS J.R.B., OLIVEIRA M.C.N., HOFFMANN-CAMPO C.B., ZINGARETTI S.M. Physiological parameters in sugarcane cultivars submitted to water deficit. Braz. J. Plant Physiol. 22 (3), 189, 2010.
  • 13. ANJUM S.A., TANVEER M., ASHRAF U., HUSSAIN S., SHAHZAD B., KHAN I., WANG L. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ. Sci. Pollut. Res. 23 (17), 17132, 2016.
  • 14. NAEEM M., NAEEM M.S., AHMAD R., IHSAN M.Z., ASHRAF M.Y., HUSSAIN Y., FAHAD S. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Arch. Agron. Soil Sci. 64 (1), 116, 2017.
  • 15. PENELLA C., CALATAYUD Á., MELGAR J.C. Ascorbic acid alleviates water stress in young peach trees and improves their performance after rewatering. Front. Plant Sci. 8, 1627, 2017.
  • 16. HASAN M.M., ALHARBY H.F., HAJAR A.S., HAKEEM K.R. Leaf gas exchange, Fv/Fm ratio, ion content and growth conditions of the two Moringa species under magnetic water treatment. Pak. J. Bot. 49 (3), 921, 2017.
  • 17. FAKHRI A., BEHROUZ S. Assessment of SnS₂ nanoparticles properties for photocatalytic and antibacterial applications. Sol. Energy. 117 ,187, 2015.
  • 18. FAKHRI A., POURMAND M., KHAKPOUR R., BEHROUZ, S. Structural, optical, photoluminescence and antibacterial properties of copper-doped silver sulfide nanoparticles. J. Photochem. Photobiol. B: Biol. 149, 78, 2015.
  • 19. FAKHRI A., NEJAD P.A. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. J. Photochem. Photobiol. B: Biol. 159, 211, 2016.
  • 20. FAKHRI A., KAHI D.S. Synthesis and characterization of MnS₂/reduced graphene oxide nanohybrids for with photocatalytic and antibacterial activity. J. Photochem. Photobiol. B: Biol. 166, 259, 2017.
  • 21. MOHAMMADIA S., SOHRABI M., GOLIKAND A.N., FAKHRI A. Preparation and characterization of zinc and copper co-doped WO₃ nanoparticles: application in photocatalysis and photobiology. J. Photochem. Photobiol. B:Biol. 161, 217, 2016.
  • 22. FAKHRI A., KHAKPOUR R. Synthesis and characterization of carbon or/and boron-doped CdS nanoparticles and investigation of optical and photoluminescence properties. J. Lumin. 160, 233, 2015.
  • 23. ALI Y., SAMANEH R., KAVAKEBIAN F. Applications of magnetic water technology in farming and agriculture development: A Review of Recent Advances. Curr. World Environ. 9 (3), 695, 2014.
  • 24. ALADJADJIYAN A. Study of the influence of magnetic field on some biological characteristics of Zea mays. J. Central European Agric. 3 (2), 90, 2002.
  • 25. MAHESHWARI B.L., GREWAL H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. water manag. 96 (8), 1229, 2009.
  • 26. GREWAL H.S., MAHESHWARI B.L. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics. 32 (1), 58, 2011.
  • 27. KUMSSA D.B., JOY E.J.M., YOUNG S.D., ODEE D.W., ANDER E.L., BROADLEY M.R. Variation in the mineral element concentration of Moringa oleifera Lam. and M. stenopetala (Bak. f.) Cuf. role in human nutrition. PLoS One. 12, e0175503, 2017.
  • 28. SALEH N.M., MABROUK M.I., SALEM-BEKHIT M.M., HAFEZ E.H. Challenge of Moringa peregrina Forssk as an antimicrobial agent against multi-drug-resistant Salmonella sp. Biotech. Biotecnol. Equipment. 31 (2), 380, 2017.
  • 29. SELIM A.F.H., EL-NADY M.F. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronaut. 69 (7-8), 387, 2011.
  • 30. CANAVAR O., GÖTZ K., ELLMER F., CHMIELEWSKI F.M., KAYNAK M.A. Determination of the relationship between water use efficiency, carbon isotope discrimination and proline in sunflower genotypes under drought stress. Australian J. Crop Sci. 8 (2), 232, 2014.
  • 31. ARNON D.T. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol. 24 (1), 15, 1949.
  • 32. LICHTENTHALER H.K., WELLBURN A.R. Determination of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem Soc. Trans. 11 (5), 591, 1983.
  • 33. HUMPHRIES E.C. Mineral components and ash analysis. In: Modern Methods of Plant Analysis. Springer, Germany, 1, 468, 1956.
  • 34. KHAN M.S.A., KARIM M.A., HAQUE M.M., ISLAM M.M., KARIM A.J.M.S., MIAN M.A.K. Influence of salt and water stress on growth and yield of soybean genotypes. Pertanika J. Trop. Agri. Sci. 39 (2), 167, 2016.
  • 35. SOUZA A.D., GARCIA D., SUEIRO L., LICEA L., PORRAS E. Pre-sowing magnetic treatment of tomato seeds: effects on the growth and yield of plants cultivated late in the season. Span. Agric. Res. 3 (1), 113, 2005.
  • 36. JAVED N., ASHRAF M., AKRAM N., AL-QURAINY F. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays) by seed electromagnetic treatment. Photochem. Photobiol. 87 (6), 1354, 2011.
  • 37. ANAND A., NAGARAJAN S., VERMA A., JOSHI D., PATHAK P., BHARDWAJ J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L). Ind. J. Biochem. Biophys. 49 (1), 63, 2012.
  • 38. MAXWELL K., JOHNSON G.N. Chlorophyll fluorescence a practical guide. J. Exp. Bot. 51 (345), 659, 2000.
  • 39. MAFFEI E.M. Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 5, 545, 2014.
  • 40. ROCHALSKA M. Influence of frequent magnetic field on chlorophyll content in the leaves of sugar beet plants. Nukleonika. 50 (2), 25, 2005.
  • 41. TURKER M., TEMIRCI C., BATTAL P., EREZ M.E. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyton. Ann. Rei. Bot. 46 (2), 271, 2007.
  • 42. RADHAKRISHNAN R., KUMARI B.D.R. Protective role of pulsed magnetic field against salt stress effects in soybean organ culture. Plant Biosystems. 147 (1), 135, 2013.
  • 43. KATARIA S., BAGHEL L., GURUPRASAD K.N. Effect of seed pretreatment by magnetic field on the sensitivity of maize seedlings to ambient ultraviolet radiation (280-400 nm). Int. J. Trop. Agric. 33 (4), 7, 2015.
  • 44. BAGHEL L., KATARIA S., GURUPRASAD K.N. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics. 37 (7), 455, 2016.
  • 45. ANAND A., NAGARAJAN S., VERMA A., JOSHI D., PATHAK P., BHARDWAJ J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L). Ind. J. Biochem. Biophys. 49, 63, 2012.
  • 46. EITKEN A., TURAN M. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agric. Scandinavica, Section B-Soil Plant Sci. 54 (3), 135, 2004.
  • 47. RAHMAN A., NAHAR K., HASANUZZAMAN M., FUJITA M. Calcium Supplementation Improves Na⁺/K⁺ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings. Front. Plant Sci. 7, 609, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f1c4e3a1-127a-4b95-938b-e85f892623a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.