Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |
Tytuł artykułu

Remediation of acid mine drainage based on a novel coupled membrane-free microbial fuel cell with permeable reactive barrier system

Warianty tytułu
Języki publikacji
In this study, a coupled membrane-free microbial fuel cell (MFC) with permeable reactive barrier (PRB) was reported and its treatment performance and electricity generation for acid mine drainage (AMD) were examined. The pilot-scale continuous flow MFC-PRB was operated for five periods at a hydraulic retention time of 48.0 h, and the average sulphate removal percentages of 51.2%, 39.8%, and 33.1% were obtained in effluent of 1,000, 2,000, 3,000 mg/l, respectively. More than 99.5% of the initial concentrations of Cu2+, Zn2+, and Pb2+ were removed, resulting in concentrations of those elements of 0.01-0.05 mg/l in the effluent. The results demonstrated that the MFC-PRB holds a potential capacity for remediation of AMD.
Słowa kluczowe
Opis fizyczny
  • School of Biochemical Engineering, Anhui Polytechnic University, Beijing Mid-road No. 10, Wuhu, Anhui, China, 241000 Wuhu, China
  • School of Biochemical Engineering, Anhui Polytechnic University, Beijing Mid-road No. 10, Wuhu, Anhui, China, 241000 Wuhu, China
  • School of Biochemical Engineering, Anhui Polytechnic University, Beijing Mid-road No. 10, Wuhu, Anhui, China, 241000 Wuhu, China
  • School of Biochemical Engineering, Anhui Polytechnic University, Beijing Mid-road No. 10, Wuhu, Anhui, China, 241000 Wuhu, China
  • School of Biochemical Engineering, Anhui Polytechnic University, Beijing Mid-road No. 10, Wuhu, Anhui, China, 241000 Wuhu, China
  • 1. DEMERS I., BOUDA M., MBONIMPA M., BENZAAZ-OUA M., BOIS D., GAGNON M. Valorization of acid mine drainage treatment sludge as remediation component to control acid generation from mine wastes, part 2: Field experimentation. Miner Eng. 76, 117, 2015.
  • 2. MIGUEL M.G., BARRETO R.P., PEREIRA S.Y. Analysis of Aluminum, Manganese, and Iron Adsorption for the Design of a Liner for Retention of the Acid Mining Drainage. Water, Air, & Soil Pollution. 226, 1, 2015.
  • 3. UNDERWOOD B.E., KRUSE N.A., BOWMAN J.R. Long-term chemical and biological improvement in an acid mine drainage-impacted watershed. Environ Monit Assess. 186, 7539, 2014.
  • 4. KIJJANAPANICH P., PAKDEERATTANAMINT K., LENS P., ANNACHHATRE A.P. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage. Environ Technol. 33, 2635, 2012.
  • 5. LEFEBVRE O., NECULITA C.M., YUE X., NG H.Y. Bioelectrochemical treatment of acid mine drainage dominated with iron. J Hazard Mater. 241, 411, 2012.
  • 6. RIEFLER R.G., KROHN J., STUART B., SOCOTCH C. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage. Sci Total Environ. 394, 222, 2018.
  • 7. YIM G., JI S., CHEONG Y, NECULITA C .M., SONG H. The influences of the amount of organic substrate on the performance of pilot-scale passive bioreactors for acid mine drainage treatment. Environmental Earth Sciences. 73, 4717, 2012.
  • 8. CHOUDHARY R.P., SHEORAN A.S. Performance of single substrate in sulphate reducing bioreactor for the treatment of acid mine drainage. Miner Eng. 39, 29, 2012.
  • 9. BAI H., KANG Y., QUAN H., HAN Y., SUN J., FENG Y. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technol. 128, 818, 2013.
  • 10. LIENDO M.A., HIDALGO G.E.N., SAMPAIO C.H., HECK N.C. Synthesis of ZVI particles for acid mine drainage reactive barriers: experimental and theoretical evaluation. Journal of Materials Research and Technology. 1, 75, 2012.
  • 11. SU X., TIAN Y., SUN Z., LU Y., LI Z. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling. Biosensors and Bioelectronics. 49, 92, 2013.
  • 12. DI NATALE F., DI NATALE M., GRECO R., LANCIA A., LAUDANTE C., MUSMARRA D. Groundwater protection from cadmium contamination by permeable reactive barriers. J Hazard Mater. 160, 428, 2008.
  • 13. BENNER S.G., BLOWES D.W., GOULD W.D., HERBERT R.B., PTACEK C.J. Geochemistry of a permeable reactive barrier for metals and acid mine drainage. Environ Sci Tech-nol. 33, 2793, 1999.
  • 14. GIBERT O., DE PABLO J., LUIS CORTINA J., AYORA C. Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J Chem Technol Biot. 78, 489, 2008.
  • 15. WAYBRANT K.R., BLOWES D.W., PTACEK C.J. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ Sci Technol. 32, 1972, 1998.
  • 16. BLOWES D.W., PTACEK C.J., BENNER S.G., MCRAE C., PULS R.W. Treatment of dissolved metals and nutrients using permeable reactive barriers. J Contam Hydrol. 45, 123, 2000.
  • 17. WAYBRANT K.R., PTACEK C.J., BLOWES D.W. Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol. 36, 1349, 2002.
  • 18. GIBERT O., RöTTING T., CORTINA J.L., DE PABLO J., AYORA C., CARRERA J., BOLZICOO J. In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcollar (Sw Spain). J Hazard Mater. 191, 287, 2011.
  • 19. ZIJLSTRA J., DESSI R., PERETTI R., ZUCCA A. Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud. Water Environ Res. 82, 319, 2010.
  • 20. GIBERT O., CORTINA J.L., DE PABLO J., AYORA C. Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Environ Sci Pollut R. 20, 7854, 2013.
  • 21. ZHANG H.Y., WANG B., DONG X.L., FAN Z.M., JU Y.Y. [Feasibility of sewage sludge used as filling material in permeable reactive barrier]. Huan jing ke xue=Huanjing kexue/ [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui" Huanjing ke xue" bian ji wei yuan hui.]. 31, 1280, 2010.
  • 22. FREGUIA S., TEH E.H., BOON N., LEUNG K.M., KELLER J., RABAEY K. Microbial fuel cells operating on mixed fatty acids. Bioresource Technol. 101, 1233, 2010.
  • 23. CHENG S., JANG J., DEMPSEY B.A., LOGAN B.E. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Res. 45, 303, 2010.
  • 24. ZHANG B., ZHANG J., LIU Y., HAO C., TIAN C., FENG C., LEI Z., HUANG W., ZHANG Z. Identification of removal principles and involved bacteria in microbial fuel cells for sulfide removal and electricity generation. Int J Hydrogen Energ. 38, 14348, 2013.
  • 25. CHENG S., DEMPSEY B.A., LOGAN B.E. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ Sci Technol. 41, 8149, 2007.
  • 26. ZHAI L., SONG W., TONG Z., SUN M. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater. J Hazard Mater. 243, 350, 2013.
  • 27. LUO H., FU S., LIU G., ZHANG R., BAI Y., LUO X. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells. Bioresource Technol. 167, 462, 2014.
  • 28. ZHANG B., ZHANG J., YANG Q., FENG C., ZHU Y., YE Z., NI J. Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM). Bioresource Technol. 124, 1, 2012.
  • 29. ANGELOV A., BRATKOVA S., LOUKANOV A. Microbial fuel cell based on electroactive sulfate-reducing biofilm. Energ Convers Manage. 67, 283, 2013.
  • 30. LEE D., LEE C., CHANG J. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture. J Hazard Mater. 243, 67, 2012.
  • 31. RICE E.W., BRIDGEWATER L., Association APH. Standard methods for the examination of water and wastewater: American Public Health Association Washington, DC; 2012.
  • 32. ZHENG B., LIU H. Electrochemical Sulfide Removal on Carbon Electrode in Sulfate Reducing Bacteria Microbiological Fuel Cell. ECS Transactions. 58, 1, 2014.
  • 33. ZHANG B., ZHAO H., ZHOU S., SHI C., WANG C., NI J. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresource Technol. 100, 5687, 2009.
  • 34. ZHAO F., RAHUNEN N., VARCOE J.R., CHANDRA A., AVIGNONE-ROSSA C., THUMSER A.E., SLADE R.C.T. Activated carbon cloth as anode for sulfate removal in a mi-crobial fuel cell. Environ Sci Technol. 42, 4971, 2008.
  • 35. SANGCHAROEN A., NIYOM W., SUWANNASILP B.B. A microbial fuel cell treating organic wastewater containing high sulfate under continuous operation: Performance and microbial community. Process Biochem. 2015.
  • 36. DE LIMA A., GONęALVES M., GRANATO M., LEITE S. Anaerobic sulphate-reducing microbial process using UASB reactor for heavy metals decontamination. Environ Technol. 22, 261, 2001.
  • 37. CORD-RUWISCH R., WIDDEL F. Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria. Appl Microbiol Biot. 25, 169, 1986.
  • 38. GANESH R., ROBINSON K.G., CHU L., KUCSMAS D., REED G.D. Reductive precipitation of uranium by Desul-fovibrio desulfuricans: evaluation of cocontaminant effects and selective removal. Water Res. 33, 3447, 1999.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.