PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 1 |

Tytuł artykułu

Effects of different levels of glycine in the nutrient solution on the growth, nutrient composition, and antioxidant activity of coriander (Coriandrum sativum L.)

Treść / Zawartość

Warianty tytułu

PL
Wpływ zróżnicowanego poziomu glicyny w roztworze odżywczym na wzrost, skład mineralny oraz aktywność antyoksydacyjną kolendry (Coriandrum sativum L.)

Języki publikacji

EN

Abstrakty

EN
A nutrient solution experiment was performed using sand culture to evaluate the effects of different glycine levels on the growth and nutrient uptake of coriander (Coriandrum sativum L.). Different glycine concentrations of 0, 5, 10, 20, or 40 mg L−1 were applied to plants via Hoagland’s nutrient solution in a completely randomized design with four replications and under greenhouse conditions. The results showed that leaf SPAD (soil and plant analysis development; an indicator of leaf greenness) value, stem diameter, and fresh and dry weights of shoots and roots were significantly increased by 10 mg L−1 glycine in comparison to the control plants. Application of glycine at 40 mg L−1 reduced many plant growth parameters, whereas leaf proline concentration was increased. All glycine levels except for 40 mg L−1 increased root fresh weight. Leaf protein content was increased by glycine applied at 10 or 20 mg L−1, whereas leaf antioxidant activity was increased at all glycine levels. Application of glycine increased leaf concentrations of nitrogen and potassium (at 10 mg L−1), magnesium (at 5 mg L−1), and zinc (at all glycine levels) compared to the control plants. The results indicate that moderate level of glycine (10 mg L−1) in the nutrient solution can improve the growth and nutritional quality of coriander.
PL
W celu oceny wpływu zróżnicowanego poziomu glicyny na wzrost oraz pobieranie składników mineralnych przez rośliny kolendry (Coriandrum sativum L.) przeprowadzono eksperyment z zastosowaniem kultur piaskowych oraz roztworu odżywczego. Różne stężenia glicyny 0, 5, 10, 20 lub 40 mg L−1 aplikowano roślinom w warunkach szklarniowych za pośrednictwem pożywki Hoaglanda w układzie kompletnie zrandomizowanym w czterech powtórzeniach. Uzyskane wyniki wskazują, że wartość SPAD liścia, średnica łodygi, świeża i sucha masa pędów i korzeni były istotnie większe po zastosowaniu 10 mg L−1 glicyny w porównaniu z roślinami kontrolnymi. Aplikacja 40 mg L−1 glicyny spowodowała zmniejszenie wielu parametrów wzrostu roślin, podczas gdy stężenie proliny w liściach uległo podwyższeniu. Wszystkie zastosowane poziomy glicyny, z wyjątkiem 40 mg L−1, wpływały na zwiększenie świeżej masy korzeni. Zawartość białka w liściach wzrastała po aplikacji glicyny w stężeniach 10 lub 20 mg L−1, podczas gdy aktywność przeciwutleniająca liści uległa podwyższeniu po zastosowaniu wszystkich stężeń glicyny. W porównaniu z roślinami kontrolnymi aplikacja glicyny powodowała w liściach wzrost stężenia azotu i potasu (przy 10 mg L−1), magnezu (przy 5 mg L−1) i cynku (przy wszystkich zastosowanych poziomach glicyny). Wyniki wskazują, że umiarkowany poziom glicyny (10 mg L−1) w roztworze odżywczym może wpływać korzystnie na wzrost i wartość odżywczą kolendry.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

1

Opis fizyczny

Article: 1759 [9 p.], fig.,ref.

Twórcy

  • Department of Horticultural Sciences, Tarbiat Modares University, Teheran, Iran
autor
  • Department of Horticultural Sciences, Tarbiat Modares University, Teheran, Iran

Bibliografia

  • Sánchez AS, Juárez M, Sánchez-Andreu J, Jordá J, Bermúdez D. Use of humic substances and amino acids to enhance iron availability for tomato plants from applications of the chelate FeEDDHA. J Plant Nutr. 2005;28:1877–1886. https://doi.org/10.1080/01904160500306359
  • Tantawy AS, Abdel-Mawgoud AMR, El-Nemr MA, Chamoun YG. Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Eur J Sci Res. 2009;30:484–494.
  • Souri MK. Plants adaptation to control nitrification process in tropical region; case study with Acrocomia totai and Brachiaria humidicola plants. Open Agric. 2016;1:144–150. https://doi.org/10.1515/opag-2016-0019
  • Marschner P. Marschner’s mineral nutrition of higher plants. 3 ed. London: Elsevier; 2011.
  • Souri MK. Aminochelate fertilizers: the new approach to the old problem; a review. Open Agric. 2016;1:118–123. https://doi.org/10.1515/opag-2016-0016
  • Garcia AL, Madrid R, Gimeno V, Rodriguez-Ortega WM, Nicolas N, Garcia-Sanchez F. The effects of amino acids fertilization incorporated to the nutrient solution on mineral composition and growth in tomato seedlings. Spanish Journal of Agricultural Research. 2011;9:852–861. https://doi.org/10.5424/sjar/20110903-399-10
  • Souri MK, Yaghoubi F, Moghadamyar M. Growth and quality of cucumber, tomato, and green bean plants under foliar and soil applications of an aminochelate fertilizer. Horticulture, Environment, and Biotechnology. 2017;58:530–536. https://doi.org/10.1007/s13580-017-0349-0
  • Ma Q, Cao X, Xie Y, Xiao H, Tan X, Wu L. Effects of glucose on the uptake and metabolism of glycine in pakchoi (Brassica chinensis L.) exposed to various nitrogen sources. BMC Plant Biol. 2017;17:58. https://doi.org/10.1186/s12870-017-1006-6
  • Näsholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants. New Phytol. 2009;182:31–48. https://doi.org/10.1111/j.1469-8137.2008.02751.x
  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol. 2008;180:620–630. https://doi.org/10.1111/j.1469-8137.2008.02589.x
  • Jämtgård S, Näsholm T, Huss-Danell K. Characteristics of amino acid uptake in barley. Plant Soil. 2008;302:221–231. https://doi.org/10.1007/s11104-007-9473-4
  • Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot. 2014;65:1865–1878. https://doi.org/10.1093/jxb/eru012
  • Atilio JB, Causin HF. The central role of amino acids on nitrogen utilization and plant growth. J Plant Physiol. 1996;149:358–362. https://doi.org/10.1016/S0176-1617(96)80134-9
  • Liu XQ, Chen HY, Ni QX, Kyu SL. Evaluation of the role of mixed amino acids in nitrate uptake and assimilation in leafy radish by using 15N-labeled nitrate. Agric Sci China. 2008;7:1196–1202. https://doi.org/10.1016/S1671-2927(08)60164-9
  • Cerdán M, Sánchez‐Sánchez A, Jordá JD, Juárez M, Sánchez‐Andreu J. Effect of commercial amino acids on iron nutrition of tomato plants grown under lime‐induced iron deficiency. J Plant Nutr Soil Sci. 2013;176:859–866. https://doi.org/10.1002/jpln.201200525
  • Galili G, Amir R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J. 2013;11:211–222. https://doi.org/10.1111/pbi.12025
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol. 1995;28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Shams M, Yildirim E, Ekinci M, Turan M, Dursun A, Parlakova F, et al. Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defense systems in lettuce under salt stress. Horticulture, Environment, and Biotechnology. 2016;57:225–231. https://doi.org/10.1007/s13580-016-0021-0
  • Ge T, Song S, Roberts P, Jones DL, Huang D, Iwasaki K. Amino acids as a nitrogen source for tomato seedlings: the use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlings. Environ Exp Bot. 2009;66:357–361. https://doi.org/10.1016/j.envexpbot.2009.05.004
  • Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, et al. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J Plant Nutr Soil Sci. 2009;172:237–244. https://doi.org/10.1002/jpln.200800174
  • Zhou Z, Zhou J, Li R, Wang H, Wang J. Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant Soil. 2007;292:105–117. https://doi.org/10.1007/s11104-007-9206-8
  • Haydon MJ, Cobbett CS. Transporters of ligands for essential metal ions in plants. New Phytol. 2007;174:499–506. https://doi.org/10.1111/j.1469-8137.2007.02051.x
  • Padgett PE, Leonard RT. Regulation of nitrate uptake by amino acids in maize cell suspension culture and intact roots. Plant Soil. 1993;155–156:159–161.
  • Ahmed CB, Rouina BB, Sensoy S, Boukhriss M, Abdullah FB. Saline water irrigation effects on antioxidant defense system and proline accumulation in leaves and roots of field-grown olive. J Agric Food Chem. 2009;57:11484–11490. https://doi.org/10.1021/jf901490f
  • Souri MK, Römheld V. Split daily application of ammonium cannot ameliorate ammonium toxicity in tomato plants. Horticulture, Environment, and Biotechnology. 2009;50:384–391.
  • Fahimi F, Souri MK, Yaghoubi F. Growth and development of greenhouse cucumber under foliar application of Biomin and Humifolin fertilizers in comparison to their soil application and NPK. Journal of Science and Technology of Greenhouse Culture. 2016;7(25):143–152. https://doi.org/10.18869/acadpub.ejgcst.7.1.143
  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot. 2007;58(15–16):4245–4255. https://doi.org/10.1093/jxb/erm284
  • Gunes A, Post WN, Kirkby EA, Aktas M. Influence of partial replacement of nitrate by amino acid nitrogen or urea in the nutrient medium on nitrate accumulation in NFT grown winter lettuce. J Plant Nutr. 1994;17:1929–1938. https://doi.org/10.1080/01904169409364855
  • Souri MK. Chelates and aminochelates, and their role in plant nutrition. Tehran: Agriculture Education and Extension Press; 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f106795a-ccb1-4876-80d9-e1c68251053a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.