PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 01 |

Tytuł artykułu

Al-induced secretion of organic acid, gene expression and root elongation in soybean roots

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Al-activated organic acid transporter genes (ALMT and MATE) and plasma membrane H?-ATPase gene (PHA) are known to contribute to the regulation of organic acid secretion in several crops. However, it remains unclear how these genes interact to modulate organic acid exudation in the same plant species. In this study, Al-induced expression of genes (GmALMT1, GmMATE1 and GmPHA1), secretion of organic acid and root elongation were characterized in soybean roots. Results indicated that treatment with 50 lM Al activated the expression of GmALMT1, GmMATE1 and GmPHA1, and the exudation of citrate and malate significantly in apical 5 mm region of soybean seedlings, but inhibited root elongation by 57.8 %. The highest malate exudation rate and the maximal expression of GmALMT1 and GmPHA1 were observed after 2 h of 50 lM Al treatment, while the corresponding values for citrate exudation rate and GmMATE1 expression occurred at 8 h. The exudation of malate and citrate contributed to but could not recover Al-triggered root elongation. A root-split experiment indicated that Al-activated gene expression, organic acid secretion and root growth inhibition required the direct contact of Al3?. The removal of shoots in soybean seedlings decreased Al-activated gene expression by 26.1–40.5 %, and secretion of organic acid by 14.7–40.2 %. Furthermore, shoot excision aggravated Al-inhibited root elongation, indicating the existence of other Al tolerance mechanism except the exudation of organic acid. These results suggested that Al-activated expression of GmPHA1-, GmMATE1- and GmALMT1-mediated exudation of malate and citrate, and shoots played an important role in Al toxicity resistance in soybean roots.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

01

Opis fizyczny

p.223-232,fig.,ref.

Twórcy

autor
  • College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
autor
  • College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
autor
  • College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
autor
autor
  • Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
autor
  • Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
autor
  • Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Wuhan 430062, China
autor
  • College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China

Bibliografia

  • Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H?-ATPase activity in nearisogenic wheat lines differing in tolerance to aluminum. New Phytol 162:71–79
  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172
  • de la Fuente JM, Ramı´rez-Rodrı´guez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568
  • Fan F, Li XW, Wu YP, Xia ZS, Li JJ, Zhu W, Liu JX (2011) Differential expression of expressed sequence tags in alfalfa roots under aluminum stress. Acta Physiol Plant 33:539–546
  • Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Ma JF (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:713–721
  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091
  • Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077
  • Kim YS, Park W, Nian H, Sasaki T, Ezaki B, Jang YS, Chung GC, Bae HJ, Ahn SJ (2010) Aluminum tolerance associated with enhancement of plasma membrane H?-ATPase in the root apex of soybean. Soil Sci Plant Nutr 56:140–149
  • Kochian LV, Hoekenga OA, Pin˜eros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Ann Rev Plant Biol 55:459–493
  • Ligaba A, Shen H, Shibata K, Yamamoto Y, Tanakamaru S, Matsumoto H (2004) The role of phosphorus in aluminiuminduced citrate and malate exudation from rape (Brassica napus). Physiol Plant 120:575–584
  • Liu JP, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminumactivated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399
  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390
  • Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying aluminum with buckwheat. Nature 390:569–570
  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278
  • Ma JF, Shen RF, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589
  • Magalhaes JV, Liu JP, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genet 39:1156–1161
  • Maron LG, Piñeros MA, Guimarães CT, Magalhaes JV, Pleiman LK, Mao CZ, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740
  • Ryan PR, Liu Q, Sperling P, Dong B, Franke S, Delhaize E (2007) A higher plant Delta 8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol 144:1968–1977
  • Ryan PR, Raman H, Gupta S, Walter JH, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149: 340–351
  • Sasaki T, Yamamoto Y, Ezaki BB, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653
  • Shen H, Yan XL, Cai KZ, Matsumoto H (2004) Differential Al resistance and citrate secretion in the tap and basal roots of common bean seedlings. Physiol Plant 121:595–603
  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296
  • Shen H, Hou NY, Schlicht M, Wan YL, Mancuso S, Baluska F (2008) Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bullet 53:2480–2487
  • Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116:155–163
  • Wang QF, Zhao Y, Yi Q, Li KZ, Yu YX, Chen LM (2010) Overexpression of malate dehydrogenase in transgenic tobacco leaves: enhanced malate synthesis and augmented Al-resistance. Acta Physiol Plant 32:1209–1220
  • Wang QF, Yi Q, Hu QQ, Zhao Y, Nian NJ, Li KZ, Yu YX, Izui K, Chen LM (2012) Simultaneous overexpression of citrate synthase and phosphoenolpyruvate carboxylase in leaves augments citrate exclusion and Al resistance in transgenic tobacco. Plant Mol Biol Rep. doi:10.1007/s11105-011-0397-z
  • Watanabe T, Jansen S, Osaki M (2005) The beneficial effect of aluminium and the role of citrate in Al accumulation in Melastoma malabathricum. New Phytol 165:773–780
  • Xu MY, You JF, Hou NN, Zhang HM, Chen G, Yang ZM (2010) Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) roots. Funct Plant Biol 37:285–295
  • Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H (2001) Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants. Physiol Plant 113:64–71
  • Yang JL, You JF, Li YY, Wu P, Zheng SJ (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell Physiol 48:66–73
  • Yang JL, Zhu XF, Peng YX, Zheng C, Ming F, Zheng SJ (2011) Aluminum regulates oxalate secretion and plasma membrane H?-ATPase activity independently in tomato roots. Planta 234:281–291
  • Yokosho K, Yamaji N, Ma JF (2010) Isolation and characterization of two MATE genes in rye. Funct Plant Biol 37:296–303
  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069
  • Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f0ead494-d236-43c9-835a-b59a7b9b8220
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.