PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 4 |

Tytuł artykułu

Assessment of microbial growth on the surface of materials in contact with water intended for human consumption using ATP method

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Elaboration of an assessment method for plumbing materials contacting drinking water was the main purpose of this study. The investigation was conducted in 8 week cycles in dynamic conditions using a continuous flow reactor. Microbial growth was measured indirectly by a bioluminescence technique (ATP assay). Every week swabs from the surface of tested materials (polypropylene and different types of polyethylene), from the domestic market were collected and the level of bioluminescence was examined. The results obtained from the surface of tested materials were repeatable and clearly approximated those obtained from the surface of a negative control (stainless steel, low susceptibility for microbial growth). The level of bioluminescence (ATP) on the surface of positive control (paraffin, high susceptibility for microbial growth) was many times higher than that observed on other materials. The presented investigation was the main part of a validation process, which in short time will serve to initiate a complete assessment system for organic materials contacting drinking water.

Wydawca

-

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.289-294,fig.,ref.

Twórcy

autor
  • Department of Municipal Hygiene, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
autor
  • Department of Municipal Hygiene, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland

Bibliografia

  • Aycicek H., U. Oguz and K. Karci. 2006. Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen. Int. J. Hyg. Environ.-Health 209: 203-206.
  • Breeuwer P. and T. Abee. 2000. Assessment of viability of microorganisms employing fluorescence techniques. Int. J. Food Microbiol. 55: 193-200.
  • BS 6920-2.4, British Standard. 2000. Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of water. Methods of test. Growth of aquatic microorganisms test. http://standardsdevelopment.bsigroup.com/Home/Committee/50002182?type=m&field=Status
  • Bzducha A. 2007 Rapid methods for microorganism identification in food (in Polish). Medycyna Wet. 63: 773-777.
  • Cais-Sokolinska D. and J. Pikul. 2008. Using the bioluminescence and microbiological contact methods in sustaining a proper hygienic level in food processing plants. Acta Sci. Pol. Technol. Aliment. 7: 53-60.
  • Camper A.K., K. Brastrup, A. Sandvig, J. Clement, C. Spencer and A.J. Capuzzi. 2003. Effect of distribution system materials on bacterial regrowth. J. Am. Water Works Assoc. 95: 107-121.
  • Cho M. and J. Yoon. 2007. The application of bioluminescence assay with culturing for evaluating quantitative disinfection performance. Water Res. 41: 741-746.
  • Council Directive (89/106/ECC) of 21 December 1988 on the Approximation of Laws, Regulations and Administrative Provisions of the Member States Relating to Constructions Product. http://ec.europa.eu/enterprise/sectors/construction/documents/ legislation/cpd/index_en.htm -
  • Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, http://ec.europa.eu/environment/water/water-drink/index_en.html -
  • DVGW W270, Microbial Enhancement on Materials to Come into Contact with Drinking Water - Testing and Assessment. 2007. http://www.dvgw.de/
  • Hawronskyj J.-M. and J. Holah. 1997. ATP a universal hygiene monitor. Trends Food Sci. Technol. 8: 79-84.
  • Kim H., J. Ryu and L.R. Beuchat. 2006. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microbiol. 72: 5846-5856.
  • Larson E.L., A. Aiello, C. Gomez-Duarte, S.X. Lin, L. Lee, P. Della-Latta and C. Lindhardt. 2003. Bioluminescence ATP monitoring as a surrogate marker for microbial load on hands and surfaces in the home. Food Microbiol. 20: 735-739.
  • Lehtola M., J. Juhna, I. Miettinen, T. Vartiainen and P.J. Martikainen. 2004. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. Journal of Industrial Microbiology and Biotechnology 31 : 489-494.
  • Mampel J., T. Spirig, S.S. Weber, J.A.J. Haagensen, S. Molin and H. Hilbi. 2006. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl. Environ. Microbiol. 72: 2885-2895.
  • Martiny A. C., T. M. Jørgensen, H.J. Albrechtsen, E. Arvin and S. Molin. 2003. Long-Term succession of Structure and diversity of a biofilm formed in a model drinking water distribution system. Appl. Environ. Microbiol. 69: 6899-6907.
  • McBain A.J., R.G. Bartolo, C.E. Catrenich, D. Charbonneau, R.G. Ledder, A.H. Rickard, S.A. Symmons and P. Gilbert. 2003. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl. Environ. Microbiol. 69: 177-185.
  • Niquette P., P. Servais and R. Savoir. 2000. impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res. 34: 1952-1956.
  • Önorm B. 5018-1, 2002. 2 Prüfung der Verkeimungseigung Trinkwasserrohren, Teil 1: Prüfverfahren, Teil 2: Bewertung. Österreichisches Normungsinstitut, 1020 Wien.
  • Rosmaninho R., O. Santos, T. Nylander, M. Paulsson, M. Beuf, T. Benezech, S. Yiantsios, A. Andritsos, A. Karabelas, G. Rizzo and others. 2007. Modified stainless steel surfaces targeted to reduce fouling: Evaluation of fouling by milk components. J. Food Eng. 80: 1176-1187.
  • Squirrell D.D., R.L. Price and M.J. Murphy. 2002. Rapid and specific detection of bacteria using bioluminescence. Anal. Chem. Acta 457: 109-114.
  • Szczotko M., B. Krogulska and A. Krogulski. 2008. Elaboration of method for assessment of susceptibiliti to microbial growth of materials contacting with drinking water (in Polish). Roczn. PZH 59: 103-111.
  • Szczotko M., B. Krogulska and A. Krogulski. 2009. Investigation of susceptibility of materials contacting with drinking water for microbial growth (in Polish). Roczn. PZH60: 137-142.
  • van der Kooij D., H.-J. Albrechtsen, C.B. Corfitzen, J. Ashworth, I. Parry, Enkiri, B. Hambsch, C. Hametner, H.R. Kloiber , H.R. Veenendaal, et al. 2003. CPDW project - Assessment of the microbial growth support potential of products in contact with drinking water.
  • van der Kooij D. and H.R. Veenendaal. 2001. Biomass production potential of materials in contact with drinking water: method and practical importance. Water Science & Technology: Water Supply 1: 39-45.
  • van der Kooij D., H.R. Veenendaal, C. Baars-Lorist, D.W. van der Klift and Y.C. Drost. 1995. Biofilm formation on surfaces of glass and teflon exposed to treated water. Water Res. 29: 1655-1662.
  • Zacheus O.M., E.K. Iivanainen, T.K. Nissinen, M.J. Lehtola and P.J. Martikainen. 2000. Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34: 63-70.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f0d8573d-883e-4ee4-b5e4-e9c6f9548e23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.