PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 3 |

Tytuł artykułu

Phenylbutyrate administration reduces changes in the cerebellar Purkinje cells population in PDC‑deficient mice

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In humans, pyruvate dehydrogenase complex (PDC) deficiency impairs brain energy metabolism by reducing the availability of the functional acetyl‑CoA pool. This “hypometabolic defect” results in congenital lactic acidosis and abnormalities of brain morphology and function, ranging from mild ataxia to profound psychomotor retardation. Our previous study showed reduction in total cell number and dendritic arbors in the cerebellar Purkinje cells in systemic PDC‑deficient mice. Phenylbutyrate has been shown to increase PDC activity in cultured fibroblasts from PDC‑deficient patients. Hence, we investigated the effects of postnatal (days 2‑35) phenylbutyrate administration on the cerebellar Purkinje cell population in PDC‑deficient female mice. Histological analyses of different regions of cerebellar cortex from the brain‑specific PDC‑deficient saline‑injected mice revealed statistically significant reduction in the Purkinje cell density and increased cell size of the individual Purkinje cell soma compared to control PDC‑normal, saline‑injected group. Administration of phenylbutyrate to control mice did not cause significant changes in the Purkinje cell density and cell size in the studied regions. In contrast, administration of phenylbutyrate variably lessened the ill effects of PDC deficiency on Purkinje cell populations in different areas of the cerebellum. Our results lend further support for the possible use of phenylbutyrate as a potential treatment for PDC deficiency

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

3

Opis fizyczny

p.305-321,fig.,ref.

Twórcy

autor
  • Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
  • Department of Clinical Anatomy, Pomeranian University in Slupsk, Slupsk, Poland
autor
  • Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
autor
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
autor
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
  • Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
  • Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA,
autor
  • Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA

Bibliografia

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one‑map hy‑ pothesis. Nat Rev Neurosci 10: 670–681.
  • Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope  P, Jorntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille  M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH (2018) Cerebellar modules and their role as operational cerebellar pro‑ cessing units. Cerebellum 17: 654–682.
  • Ayala P, Montenegro J, Vivar R, Letelier A, Urroz PA, Copaja  M, Pivet D, Humeres C, Troncoso R, Vicencio JM, Lavandero S, Diaz‑Araya G (2012) Attenuation of endoplasmic reticulum stress using the chemical chap‑ erone 4‑phenylbutyric acid prevents cardiac fibrosis induced by iso‑ proterenol. Exp Mol Pathol 92: 97–104.
  • Blass JP, Avigan J, Uhlendorf BW (1970) A defect in pyruvate decarboxy‑ lase in a child with an intermittent movement disorder. J Clin Invest 49: 423–432.
  • Brannstrom T, Havton L, Kellerth JO (1992a) Changes in size and dendritic arborization patterns of adult cat spinal alpha‑motoneurons following permanent axotomy. J Comp Neurol 318: 439–451.
  • Brannstrom T, Havton L, Kellerth JO (1992b) Restorative effects of reinner‑ vation on the size and dendritic arborization patterns of axotomized cat spinal alpha‑motoneurons. J Comp Neurol 318: 452–461.
  • Brockerhoff SE, Dowling JE, Hurley JB (1998) Zebrafish retinal mutants. Vision Res 38: 1335–1339.
  • Brockerhoff SE, Hurley JB, Janssen‑Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92: 10545–10549.
  • Brown GK, Otero LJ, LeGris M, Brown RM (1994) Pyruvate dehydrogenase deficiency. J Med Genet 31: 875–879.
  • Brunetti‑Pierri N, Lanpher B, Erez A, Ananieva EA, Islam M, Marini JC, Sun Q, Yu C, Hegde M, Li J, Wynn RM, Chuang DT, Hutson S, Lee B (2011) Phenylbutyrate therapy for maple syrup urine disease. Hum Mol Genet 20: 631–640.
  • Buckner RL (2013) The cerebellum and cognitive function: 25 years of in‑ sight from anatomy and neuroimaging. Neuron 80: 807–815.
  • Cross JH, Connelly A, Gadian DG, Kendall BE, Brown GK, Brown RM, Leonard JV (1994) Clinical diversity of pyruvate dehydrogenase deficiency. Pediatr Neurol 10: 276–283.
  • Dasgupta S, Zhou Y, Jana M, Banik NL, Pahan K (2003) Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps. J Immunol 170: 3874–3882.
  • De Meirleir L (2013) Disorders of pyruvate metabolism. In: Handbook of clin‑ ical neurology (Dulac LM, Sarmat HB, Eds.). Elsevier 113: p. 1667–1673.
  • DeBrosse SD, Kerr DS (2016) Pyruvate dehydrogenase complex deficiency. In: Mitochondrial studies; Underlying mechanisms and diagnosis (Saneto RP, Parikh S, Cohen BH, Eds.). Academic Press: p. 93–101.
  • Ferriero R, Boutron A, Brivet M, Kerr D, Morava E, Rodenburg RJ, Bonafe L, Baumgartner MR, Anikster Y, Braverman E, Brunetti‑Pierri N (2014) Phenylbutyrate increases pyruvate dehydrogenase complex activity in cells harboring a variety of defects. Ann Clin Transl Neurol 1: 462–470.
  • Ferriero R, Iannuzzi C, Manco G, Brunetti‑Pierri N (2015) Differential inhibi‑ tion of PDKs by phenylbutyrate and enhancement of pyruvate dehydro‑ genase complex activity by combination with dichloroacetate. J Inherit Metab Dis 38: 895–904.
  • Ferriero R, Manco G, Lamantea E, Nusco E, Ferrante MI, Sordino P, Stacpoole PW, Lee B, Zeviani M, Brunetti‑Pierri N (2013) Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis. Sci Transl Med 5: 175ra131.
  • Gelfo F, Florenzano F, Foti F, Burello  L, Petrosini  L, De Bartolo P (2016) Lesion‑induced and activity‑dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere. Brain Struct Funct 221: 3405–3426.
  • Graus‑Porta D, Blaess S, Senften  M, Littlewood‑Evans A, Damsky C, Huang Z, Orban P, Klein R, Schittny JC, Muller U (2001) Beta1‑class inte‑ grins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367–379.
  • Grodd W, Hulsmann E, Ackermann H (2005) Functional MRI localizing in the cerebellum. Neurosurg Clin N Am 16: 77–99.
  • Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic orga‑ nization. Hum Brain Mapp 13: 55–73.
  • Harris RA, Bowker‑Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzyme Regul 42: 249–259.
  • Hemalatha SG, Kerr DS, Wexler ID, Lusk MM, Kaung  M, Du Y, Kolli  M, Schelper RL, Patel MS (1995) Pyruvate dehydrogenase complex deficien‑ cy due to a point mutation (P188L) within the thiamine pyrophosphate binding loop of the E1 alpha subunit. Hum Mol Genet 4: 315–318.
  • Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodi‑ um phenylbutyrate. Drugs R D 11: 227–249.
  • Jankowska‑Kulawy A, Bielarczyk H, Ronowska A, Bizon‑Zygmanska D, Szutowicz A (2014) Disturnbances of brain energy metabolism in thia‑ mine deficiency. J Lab Diagn 50: 333–338.
  • Jankowski J, Miething A, Schilling K, Oberdick J, Baader S (2011) Cell death as a regulator of cerebellar histogenesis and compartmentation. Cerebellum 10: 373–392.
  • Johnson MT, Mahmood S, Hyatt SL, Yang HS, Soloway PD, Hanson RW, Patel MS (2001) Inactivation of the murine pyruvate dehydrogenase (Pdha1) gene and its effect on early embryonic development. Mol Genet Metab 74: 293–302.
  • Kaufmann P, Engelstad K, Wei Y, Jhung S, Sano MC, Shungu DC, Millar WS, Hong X, Gooch CL, Mao X, Pascual JM, Hirano  M, Stacpoole PW, DiMauro S, De Vivo DC (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 66: 324–330.
  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23: 8432–8444.
  • Komuro Y, Kumada T, Ohno N, Foote KD, Komuro, H (2013) Migration in the cerebellum. Cellular migration and formation of neuronal connections. In: Comprehensive Developmental Neuroscience (Rubenstein JLR, Rakic P, Eds.). Academic Press, p. 281–297.
  • Lawrenson C, Bares  M, Kamondi A, Kovacs A, Lumb B, Apps R, Filip P, Manto M (2018) The mystery of the cerebellum: clues from experimen‑ tal and clinical observations. Cerebellum Ataxias 5: 8.
  • Leggio M, Olivito G (2018) Topography of the cerebellum in relation to so‑ cial brain regions and emotions. In: The Cerebellum from Embryology to Diagnostic Investigations (Manto M, Huisman TAGM, Eds.). Elsevier, 154 p. 71-84.
  • Leto K, Arancillo  M, Becker EB, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart  I, Haldipur P, Hatten ME, Hoshino  M, Joyner AL, Kano  M, Kilpatrick  DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerkova G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJ, Hawkes R (2016) Consensus Paper: Cerebellar Development. Cerebellum 15: 789–828.
  • Levisohn  L, Cronin‑Golomb A, Schmahmann JD (2000) Neuropsychologi‑ cal consequences of cerebellar tumour resection in children: cerebel‑ lar cognitive affective syndrome in a paediatric population. Brain 123: 1041–1050.
  • Lissens W, De Meirleir L, Seneca S, Liebaers I, Brown GK, Brown RM, Ito M, Naito E, Kuroda Y, Kerr DS, Wexler ID, Patel MS, Robinson BH, Seyda A (2000) Mutations in the X‑linked pyruvate dehydrogenase (E1) alpha subunit gene (PDHA1) in patients with a pyruvate dehydrogenase com‑ plex deficiency. Hum Mutat 15: 209–219.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real‑time quantitative PCR and the 2(‑Delta Delta C(T)) method. Methods 25: 402–408.
  • Matthews PM, Brown RM, Otero LJ, Marchington DR, LeGris M, Howes R, Meadows LS, Shevell M, Scriver CR, Brown GK (1994) Pyruvate dehydrogenase deficiency. Clinical presentation and molecular genetic charac‑ terization of five new patients. Brain 117: 435–443.
  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4: 277–296.
  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cor‑ tex of the primate. J Neurosci 21: 700–712.
  • Naito E, Kuroda Y, Takeda E, Yokota I, Kobashi H, Miyao M (1988) Detection of pyruvate metabolism disorders by culture of skin fibroblasts with di‑ chloroacetate. Pediatr Res 23: 561–564.
  • Parvizi J, Joseph J, Press DZ, Schmahmann JD (2007) Pathological laugh‑ ter and crying in patients with multiple system atrophy‑cerebellar type. Mov Disord 22: 798–803.
  • Patel MS, Harris RA (1995) Alpha‑keto acid dehydrogenase complexes: nu‑ trient control, gene regulation and genetic defects. Overview. J Nutr 125: 1744S‑1745S.
  • Patel MS, Kerr DS, Wexler ID (1992) Biochemical and molecular aspects of pyruvate dehydrogenase complex deficiency. International Pediatrics 7: 16–22. Patel MS, Korotchkina LG (2003) The biochemistry of the pyrutate dehydro‑ genase complex. Biochem Mol Biol Edu 31: 5–15.
  • Patel MS, Roche TE (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 4: 3224–3233.
  • Paxinos G, Franklin KBJ (2013) Paxinos and Franklin’s The Mouse brain in stereotaxic coordinates. Academic Press, Amsterdam. Pliss L, Hausknecht KA, Stachowiak MK, Dlugos CA, Richards JB, Patel MS (2013) Cerebral developmental abnormalities in a mouse with systemic pyruvate dehydrogenase deficiency. PLoS One 8: e67473.
  • Pliss L, Mazurchuk R, Spernyak JA, Patel MS (2007) Brain MR imaging and proton MR spectroscopy in female mice with pyruvate dehydrogenase complex deficiency. Neurochem Res 32: 645–654.
  • Pliss L, Pentney RJ, Johnson MT, Patel MS (2004) Biochemical and structural brain alterations in female mice with cerebral pyruvate dehydrogenase deficiency. J Neurochem 91: 1082–1091. Preiser JC, Moulart D, Vincent JL (1990) Dichloroacetate administration in the treatment of endotoxin shock. Circ Shock 30: 221–228.
  • Qi X, Hosoi T, Okuma Y, Kaneko  M, Nomura Y (2004) Sodium 4‑phenyl‑ butyrate protects against cerebral ischemic injury. Mol Pharmacol 66: 899–908.
  • Reeber SL, Loeschel CA, Franklin A, Sillitoe RV (2013a) Establishment of topographic circuit zones in the cerebellum of scrambler mutant mice. Front Neural Circuits 7: 122.
  • Reeber SL, Otis TS, Sillitoe RV (2013b) New roles for the cerebellum in health and disease. Front Syst Neurosci 7: 83.
  • Robinson BH (2001) Lactic Acidemia: Disorders of Pyruvate Carboxylase and Pyruvate Dehydrogenase. In: The Metabolic and Molecular Ba‑ sis of Inherited Disease (Scriver CR, Beaudet AL, Sly WS, Valle D, Eds.). McGraw‑Hill, New York, Toronto, p. 2275–2295.
  • Robinson BH (2006) Lactic acidemia and mitochondrial disease. Mol Genet Metab 89: 3–13.
  • Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, Pahan K (2012) Sodium phenylbutyrate controls neuroinflammatory and antiox‑ idant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS One 7: e38113.
  • Rubio‑Gozalbo ME, Heerschap A, Trijbels JM, De Meirleir L, Thijssen HO, Smeitink JA (1999) Proton MR spectroscopy in a child with pyruvate de‑ hydrogenase complex deficiency. Magn Reson Imaging 17: 939–944.
  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsy‑ chiatry Clin Neurosci 16: 367–378.
  • Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum 6: 254–267.
  • Shireman RB, Mace L, Davidson S (1984) Effects of dichloroacetate and gly‑ oxylate on low density lipoprotein uptake and on growth of cultured fibroblasts. Proc Soc Exp Biol Med 175: 420–423.
  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neu‑ rochem Res 24: 321–329.
  • Srinivasan K, Sharma SS (2011) Sodium phenylbutyrate ameliorates focal cerebral ischemic/reperfusion injury associated with comorbid type 2 diabetes by reducing endoplasmic reticulum stress and DNA fragmen‑ tation. Behav Brain Res 225: 110–116.
  • Stacpoole PW, Kerr DS, Barnes C, Bunch ST, Carney PR, Fennell EM, Felitsyn  NM, Gilmore RL, Greer  M, Henderson GN, Hutson AD, Neiberger RE, O’Brien RG, Perkins LA, Quisling RG, Shroads AL, Shuster JJ, Silverstein JH, Theriaque DW, Valenstein E (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117: 1519–1531.
  • Stoodley CJ, Schmahmann JD (2018) Functional topography of the human cerebellum. In: The Cerebellum From Embryology to Diagnostic Investi‑ gation (Manto M, Huisman TAGM, Eds.). Elsevier. 154: p. 59–70.
  • Svechnikov K, Svechnikova I, Soder O (2008) Inhibitory effects of mono‑eth‑ ylhexyl phthalate on steroidogenesis in immature and adult rat Leydig cells in vitro. Reprod Toxicol 25: 485–490.
  • Svechnikova I, Gray SG, Kundrotiene J, Ponthan F, Kogner P, Ekstrom TJ (2003) Apoptosis and tumor remission in liver tumor xenografts by 4‑phenylbutyrate. Int J Oncol 22: 579–588.
  • Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, Borgatti R (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130 : 2646–2660.
  • Triepels RH, van den Heuvel LP, Loeffen JL, Buskens CA, Smeets RJ, Rubio Gozalbo ME, Budde SM, Mariman EC, Wijburg FA, Barth PG, Trijbels JM, Smeitink JA (1999) Leigh syndrome associated with a  mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol 45: 787–790.
  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neu‑ rosci 21: 370–375.
  • Wexler ID, Hemalatha SG, McConnell J, Buist NR, Dahl HH, Berry SA, Ceder‑ baum SD, Patel MS, Kerr DS (1997) Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets. Studies in patients with identical mutations. Neurology 49: 1655–1661.
  • White JJ, Sillitoe RV (2013) Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol 2: 149–164.
  • White JJ, Sillitoe RV (2013) Postnatal development of cerebellar zones re‑ vealed by neurofilament heavy chain protein expression. Front Neuro‑ anat 7: 9. Wildgruber D, Ackermann H, Grodd W (2001) Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage 13: 101–109.
  • Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT (2004) Identification of differential‑ ly expressed and developmentally regulated genes in medulloblas‑ toma using suppression subtraction hybridization. Oncogene 23: 3444–3453.
  • Yuasa S. Kawamura K, Ono K, Yamakuni T, Takahashi Y (1991) Develop‑ ment and migration of Purkinje cells in the mouse cerebellar primordi‑ um. Anat Embryol 184: 195–212.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f0c0b14d-c8be-4e4d-8c8a-0a934164ba5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.