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The efficiency of phytoremediation might be highly affected by plant-associated microorganisms, and under-
standing of the underlying mechanisms is still a great challenge. The primary aim of this study was to evaluate
the efficiency parameters for Cd2+ accumulation in the biomass of willow (Salix viminalis) as well as to define
the biochemical response of the host plant when it is inoculated with selected bacterial strains (Massilia sp. and
Pseudomonas sp.) or saprophytic fungus (Clitocybe sp.) under controlled in vitro conditions. Inoculation of
plants with bacterial strains affected the efficiency of phytoremediation process and was expressed as the quan-
tity of accumulated Cd (Q), the bioaccumulation factor (BCF) and the translocation index (Ti); however, the effect
was strain and plant organ specific. The level of hydrogen peroxide (H2O2), which is both an indicator of plant
response to biological and/or abiotic environmental stress and a molecule involved in plant-microbial interac-
tions, decreased under the influence of Cd2+ in uninoculated plants (plant growth was inhibited by Cd2+) and
increased in the inoculated variants of plants growing in the presence of Cd2+ (microbiologically stimulated bio-
mass). The saprophytic fungus Clitocybe sp. generally stimulated biomass and increased the level of H2O2 syn-
thesis in all the investigated plant organs and variants of the experiment. We suggest that  determination of  phy-
toremediation efficiency, and biochemical response (H2O2) of the host plant under  in vitro conditions can help
in predicting the final effect of plant-microbial systems in further field trials.
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INTRODUCTION

Increase in heavy metal-contaminated soils is con-
sidered one of the most serious threats to both the
environment and human health (Yoon et al., 2006;
Moosavi and Seghatoleslami, 2013). Among all heavy
metals, cadmium (Cd2+) deserves special attention
and was considered by the Agency for Toxic
Substances and Disease Registry (ATSDR) one of the
most toxic substances that is present in the environ-
ment. Moreover, this metal is in 7th place on the list
of hazardous substances (The Comprehensive
Environmental Response, Compensation, and

Liability Act – CERCLA; ATSDR, 2013), which com-
prises 275 compounds that are the most harmful to
human health. Cadmium is a chemical element that
shows high toxicity even at relatively low concentra-
tions because of its high solubility in water (Pinto et.
al., 2003), rapid bioaccumulation in the food chain
and lack of any biological function (Gallego et al.,
2012). Therefore, use of suitable recultivation tech-
nologies has been extensively studied over the last
two decades. The most promising method is phy-
toextraction (one of the phytoremediation types),
which is an effective, eco-friendly and profitable
method for restoration of ecosystems contaminated
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primarily with heavy metals (Ali et al., 2013; Mani
and Kumar, 2014; Padmavathiamma and Li, 2007;
Sun et al., 2011). The costs of applying this technol-
ogy are comparable to expenses incurred during
farming (Graves, 2007) (ca. 5–40 US$/ton) and are
several dozen times lower compared with conven-
tional techniques (Glass, 1999). Phytoextraction is a
process that consists in uptake of contaminants
present in the soil or water through the plant root
system as well as their translocation to the above
ground parts (shoots and leaves), where they are
accumulated (Rafati et al., 2011).

Phytoextraction efficiency of heavy metals is a
result of synergic interactions between plants and
their surrounding environment. Microorganisms
play a special role in this system, and they signifi-
cantly influence heavy metal uptake by plant roots
(Bell et al., 2014). Microorganisms can enhance the
efficiency of heavy metal accumulation during phy-
toextraction process by increasing their bioavailabil-
ity in the soil environment due to, i.a., changes in the
pH of the soil solution, which releases biosurfac-
tants and metal-chelating substances (i.e.
siderophores and low molecular weight organic
acids), or through redox reactions (Rajkumar et al.,
2012). Because success of phytoextraction process
depends on a plant's tolerance to metal toxicity and
its overall biomass growth, many researchers have
focused on the microorganisms that promote plant
growth through, inter alia, the following: (i)
increased availability of nutrients and water, disso-
lution of sparingly soluble phosphorus and ferric
sources (through a decreased pH and synthesis of
siderophores); (ii) synthesis of phytohormones (aux-
ins and gibberellins) that stimulate elongation and
division of plant root cells; and (iii) decreased toxic-
ity of heavy metals (through reduction of ethylene
synthesis, chelation of heavy metals ions with organ-
ic acids and siderophores, and enhancement of
antioxidative enzyme activity) (El Aafi et al., 2012;
Kuffner et al., 2010; Ma et al., 2011). Indirect pro-
motion of plant growth by microorganisms can play
a key role in extraction and removal of trace ele-
ments from the soil because an increase in the bio-
mass causes an increase in the total efficiency of
phytoremediation process at the same time
(Sessitsch et al., 2013). The microbial stimulation of
plants growing in a Cd2+-polluted environment,
especially by rhizosphere bacteria and/or mycor-
rhizal fungi, was already confirmed by many experi-
ments, e.g., Baum et al. (2006), Azcon et al. (2010),
Garg and Aggarwal (2011) and Luo et al. (2011).
Much less attention has been paid to the role of
saprophytic fungi in the plant growth promotion
process, especially in the presence of heavy metals
(Babu et al., 2014). Studies conducted on
Paecilomyces lilacinus NH1 and Solanum nigrum
L. (Gao et al., 2010), as well as Trichoderma spp.

and Zea mays (Babu et al., 2014), indicate the high
potential of saprophytic fungi (especially those that
originate from areas contaminated with heavy met-
als) for plant protection against Cd2+ toxicity and
stimulation of Cd2+ accumulation in plant biomass.
A key factor in evaluating the potential of selected
plant-microorganism systems in phytoremediation
treatments is to determine the efficiency of this
process. To determine the efficiency of phytoextrac-
tion of plant-microorganism systems used in our in
vitro experiment, we analysed the following two
parameters: the bioconcentration factor, or BCF (the
ratio of the metal concentration in the plant tissues
to the metal concentration in the medium), and the
translocation index, or Ti (the transfer efficiency of
accumulated metal from the roots to the above-
ground parts of the plant) (Ali et al., 2013). In the
improved phytostabilization process, the values of
both factors should be <<1, and during the
increased efficiency of phytoextraction, both values
should be >>1 (Peuke and Rennenberg, 2005;
Mendez and Maier, 2008). Analysis of these param-
eters can be hampered in natural conditions, in
which the chemical composition and sorption prop-
erties of soil can affect metal mobility and bioavail-
ability (Kłos et al., 2012) and consequently influence
the phytoextraction efficiency (Ali et al., 2013).
Meharg (2005) suggests that absorption of heavy
metals by plants and associated phytotoxic reactions
should be analysed under controlled conditions and
recommends hydroponic cultures as a suitable way
to search for and identify metal-tolerant plants
before starting field studies. Mala et al. (2010)
emphasize that short-term hydroponic cultures can
be highly effective in general evaluation of heavy
metal accumulation efficiency by tree species, espe-
cially in fast-growing willow species. Experiments
conducted in vitro enable strict control of sterility,
thus allowing for determination of the direct influ-
ence of the investigated microbial strains on the
plant while excluding the effects of interactions with
other microorganisms (Mhadhbi, 2012). The factors
that may be key influences in phytoextraction suc-
cess are compounds responsible for plant stress.
The negative influence of abiotic and/or biotic fac-
tors may reportedly lead to increasing reactive oxy-
gen species (ROS) production (Polle and
Rennenberg, 1993). Exposure to Cd2+ may cause
oxidative stress, which is indicated by, e.g., lipid
peroxidation, oxidative bursts or H2O2 accumulation
(Schützendübel and Polle, 2002). Cadmium con-
tributes indirectly to increased ROS production
through a significant diminution in the glutathione
(GSH) pool or by inhibiting the activity of antioxi-
dant enzymes, which is reflected in higher H2O2
accumulation in plant tissues (Schützendübel et al.,
2001). An elevated concentration of H2O2 leads to
greater ion leakage from the roots and leaves and
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may act as an indicator of the oxidative stress level
as well as changes in the antioxidant defence of
plants (Anjum et al., 2011; Garg and Bhandri,
2014). However, H2O2 is also involved in the regu-
lation of plant cell expansion and cell wall plastici-
ty. This process directly influences the rate of bio-
mass increase (Schopfer, 2002; Liszkay et al.,
2004).

The primary goal of our study was to determine
the efficiency of microbiologically assisted (by the
rhizosphere bacteria Massilia sp. and
Pseudomonas sp. and the saprophytic fungus
Clitocybe sp.) phytoextraction of Cd2+ ions by wil-
low (Salix viminalis) under in vitro conditions. The
willow species used in the experiment is considered
one of the most economically important tree species
cultivated on a wide scale for biomass production
and used in the processes of phytoremediation due
to its high heavy metals extraction capacity
(Wojciechowicz and Kikowska 2009; Hrynkiewicz et
al., 2012). During the experimental analysis, both
the metal accumulation (which is expressed as the
total amount of accumulated metal (Q), the biocon-
centration factor (BCF), and the translocation index
(Ti)) and the biomass were correlated with the inten-
sity of oxidative stress (based on the H2O2 level) in
the leaves, shoots and roots of the investigated
plants. To provide controlled conditions and elimi-
nate possible interference, the experiment was per-
formed in hydroponic culture.

MATERIALS AND METHODS

THE EXPERIMENTAL DESIGN

In the conducted experiment plants were cultured in
two variants of medium: (i) control – without addi-
tion of Cd2+ (-Cd) and (ii) medium enriched with 1
mM Cd2+ (+Cd). For both mediums four variants of
microbial inoculation were conducted: control –
uninoculated plants (i), plants inoculated with bac-
terial strains Massilia sp. III-116-18 (ii) or
Pseudomonas sp. IV-111-14 (iii), and fungus strain
Clitocybe sp. (iv). In each variant of our experiment
(8 variants in total) we analysed 5 plants for bio-
mass production (40 plants in total) – leaves, shoots
an roots were analysed separately. For each
analysed plant organ we measured: concentration of
cadmium and H2O2 synthesis in triplicate (360
measurements for each parameter in total).

PLANT MATERIAL

In the in vitro experiment, we used a willow (Salix
viminalis) clone obtained from the Institute of Plant
Genetics at the Polish Academy of Sciences in
Poznan. S. viminalis explants were cultured in 

250 mL glass jars for in vitro cultures that con-
tained 40 mL of MS medium (Murashie and Skoog,
1962: 4.26 g MS, 30 g sucrose, 8 g agar, and 1000 mL
H2Odist, pH 5.8) for 6 weeks (with continuous light-
ing at 45 μmol m-2s-1, T 26±1°C). After this time, 
2 fragments of plant shoots (each with one internode
of 2–3 cm length) from the middle part of the shoot
were cut and transferred into glass jars containing
40 mL of MS liquid medium (without agar). To sta-
bilize the plants in the liquid medium, 40 cm3 of
sterile glass beads (∅ 10 mm, Carl Roth GmbH +
Co. KG) covered with sterile gauze was used in each
glass jar in the in vitro culture.

MICROBIAL MATERIAL AND CULTURE CONDITIONS

The saprophytic fungus Clitocybe sp. was isolated
from the fruiting bodies collected in the post-mining
area in the vicinity of Bolesław, which is strongly
influenced by pollutants emitted from a smelter in
Bukowno and the Upper Silesian Industrial Region.
This area is characterized by its high concentrations
of heavy metals in the soil, such as Pb, 428.8 mg;
Zn, 1559 mg; Cu, 10.5 mg; and Cd, 14.9 mg per
kilogram dry weight of soil. A detailed analysis of the
soil collected from this area was described in our
earlier work, Złoch et al. (2014). According to
Mleczko (2004) and our own observations from
2012, Clitocybe sp. was the most frequently occur-
ring fungal species in this area. This species was
earlier classified on the basis of its phylogenetic
analysis as a saprobiont (Matheny et al., 2006),
although there are reports indicating that it belongs
to the ectomycorrhizal fungi (Högberg et al.,
1999).The collected fungus strain was identified on
the basis of ITS sequence in accordance with the
procedure given by Hrynkiewicz et al. (2010). A phy-
logenetic analysis of these sequences is presented in
Fig. 1. The mycelia were cultured and stored on
slants with PDA (DifcoTM). The suspension used for
inoculating the plants growing in the in vitro cul-
tures was prepared from 2-week-old mycelia sam-
pled from PDA medium (DifcoTM) and rubbed in a
flask filled with 5 mL of sterile physiological solution
(0.9% NaCl).

The bacterial strains Massilia sp. III-116-18
and Pseudomonas sp. IV-111-14 were isolated from
the rhizosphere of willows (Salix viminalis) growing
in anthropogenically degraded soils. The strains
were selected on the basis of their high enzymatic
activity, their capacity to synthesize siderophores
(Hrynkiewicz et al., 2010) and their high efficiency in
accumulation of Cd2+ ions in the biomass
(Hrynkiewicz et al., 2015), which indicated their
promising application in the bioremediation
processes. The bacterial inoculum was prepared
from 3-day-old cultures incubated on R2A medium
(DifcoTM), suspended in physiological solution 
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(0.9% NaCl) and diluted to OD = 0.5 (OD – optical
density, measured at 600 nm).

PLANT-MICROBIAL CO-CULTURE AND TREATMENTS
WITH CADMIUM (CD2+)

The plant inoculation was conducted 4 weeks after
transferring the willow transplants to the in vitro
cultures. The plants were inoculated with 150 μL of
bacterial suspension or 0.5 mL of mycelial suspen-
sion (per 40 mL of liquid MS medium). Two days
after microbial inoculation, Cd2+ in the form of a
sterile cadmium sulphate (3CdSO4×8H2O) solution
was added to the culture medium to a final concen-
tration of 1 mM Cd2+. Parallel to the plant inocula-
tion with microbial strains receiving Cd2+ treatment,
the inoculated plants, which were grown on the
medium without Cd ions, were subjected to analy-
sis. Furthermore, the control, which was not inocu-
lated or treated with Cd2+, was included in the
study.

ANALYSIS OF HYDROGEN PEROXIDE (H2O2) 
SYNTHESIS IN PLANT ORGANS

An analysis of H2O2 level was performed after 
31 days of in vitro culture and 24 hours after adding
Cd2+ ions (1 mM Cd2+) to contaminated variants of
the experiment. The analysis was performed accord-
ing to Veljovic-Jovanovic et al. (2002) with our own
modifications by the spectrophotometric DMAB-
MBTH-POX method. The reaction was based on
H2O2 reduction by peroxidase with the simultaneous
formation of indamine dye during the process of 
3-methyl-2-benzothiazoline hydrazone (MBTH) and
3-(dimethylamino) benzoic acid (DMAB) coupling.
One hundred milligram portions of plant tissues
(leaves, shoots and roots) were homogenized in liq-
uid nitrogen and extracted with 5 mL of 0.1% TCA
at 4°C. The resulting homogenate was centrifuged at
10 000 × g (10 min., 4°C). The supernatant was then
neutralized with 0.4 N KOH to pH 7.5 and centrifuged
at 1000 x g for 1 minute. To 1 mL of neutralized
supernatant, 250 μL of 19.8 mM DMAB (in 0.5 M
phosphate buffer, pH 6.5), 230 μL of 0.456 mM
MBTH and 0.250 μL of peroxidase (1 KU/ml) were
added. The samples were incubated for 20 minutes
at 25°C, and the absorbance of the resulting
coloured product was measured at 590 nm. The
results were compared with a standard curve made
for known H2O2 concentrations. To account for non-
specific absorbance, the experiments were accompa-
nied by control reactions without peroxidase and/or
controls in which the plant extract was replaced with
neutralized 0.1% TCA solution.

DETERMINATION OF BIOMASS, CD2+ CONTENT 
AND PHYTOEXTRACTION PARAMETERS

A dry biomass analysis was performed on 6-week-
old plants growing in the in vitro cultures for 14
days after microbial inoculation and 12 days after
adding Cd2+ ions. The resulting plant material was
dried for 24 hours at 60°C to obtain dry biomass.
Twenty milligrams of dry root, shoot and leaf sam-
ples was mineralized in a mixture of nitric and
hydrochloride acids (1:3 v/v, 180°C, 3 h) and then
dissolved in 0.1% HNO3, filtered (Ø 0.45 μm) and
measured by atomic absorption spectroscopy (AAS)
with a Perkin Elmer 4100 apparatus (PerkinElmer,
USA) to analyse the Cd2+ accumulation level in the
plant biomass. The results were presented as indi-
cators of the phytoextraction efficiency for (i) Cd2+

concentration (Cd2+ concentration was given in mg/g
of dry weight); (ii) total concentration of Cd2+ accu-
mulated in the biomass (Q = Cd2+ ion concentration
× dry biomass); (iii) the bioconcentration factor
(BCF = Cd2+ ion concentration in biomass/Cd2+

concentration in culture medium); and (iv) the index
of translocation (Ti = [concentration of Cd2+ in the

FFiigg..  11. Phylogenetic relationships of Clitocybe sp.
Neighbour-joining analysis of internal transcribed spacer
(ITS), using Kimura two-parameter genetic distances,
combined with bootstrap analysis from 1,000 replicates
(bootstrap values <50% not shown).
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aboveground plant tissues / concentration of Cd2+ in
roots] × 100).

STATISTICAL ANALYSIS

Significant differences in plant biomasses, hydrogen
peroxide levels and accumulated Cd2+ amounts
between the inoculation variants, as well as differ-
ences between the variants in culture medium (with
or without Cd2+ amendments), were determined
using a nonparametric U Mann-Whitney test due to
lack of normal distribution of analyzed data and sig-
nificant differences in variance within the compared
variants. The relations among the investigated
parameters were analysed by Pearson's correlation
separately for leaves, shoots and roots of S. vimi-
nalis under 1 mM Cd2+ addition on the basis of
mean values calculated for each variants (n=4). All
the analyses were conducted with Statistica software
(Statistica v. 7, Statsoft).

RESULTS

The microbial inoculation of willow performed dur-
ing the in vitro experiment significantly stimulated
the growth of the above-ground parts of the plants
(leaves and shoots) (Tab. 1). This effect was
observed in both the control and the medium sup-
plemented with Cd2+, as well as for both inoculation
bacterial strains, that is Massilia sp. III-116-18 and
Pseudomonas sp. IV-111-14, and the saprophytic
fungus Clitocybe sp. In the case of the control medi-
um without cadmium (-Cd), the highest biomass of
the above-ground parts (leaves and shoots) was
reported in the variant inoculated with
Pseudomonas sp. IV-111-14. In the medium
enriched with Cd2+ (+Cd), the most significant
impact on the growth of the above-ground plant parts

was observed for the variant inoculated with Massilia
sp. strain III-116-18. The biomasses of leaves and
shoots derived from the variants inoculated with
Clitocybe sp. fungus always had intermediate values
compared with the variants inoculated with both bac-
terial strains. The biomasses of plants derived from
variants inoculated with Pseudomonas sp. IV-111-14
were characterized by significantly lower growth in
the medium supplemented with Cd2+ (+Cd) com-
pared with the control medium. We did not observe
a negative impact of Cd2+ in the remaining experi-
mental variants (uninoculated control plants and
plants inoculated with Massilia sp. III-116-18 bacte-
ria and Clitocybe sp.). The bacterial strains used in
our experiment did not affect the growth of the root
biomass, unlike the saprophytic fungus, which
either stimulated or inhibited root growth depend-
ing on the medium variant (Tab. 1). Moreover, we
observed a significant decrease in the root biomass
in all the variants (except the variants inoculated
with Clitocybe sp.) in the medium supplemented
with Cd2+. The dry biomasses of the plants
(expressed as percentage values in relation to the
uninoculated variants) showed that all the microor-
ganisms used in the experiment for inoculation: the
bacteria Pseudomonas sp. IV-111-14 and Massilia sp.
III-116-18, as well as the fungus Clitocybe sp., 
stimulated the biomasses of the leaves and shoots in
the medium without Cd2+ by 30–130% for the bac-
teria and 55–60% for the fungus. In the medium
supplemented with Cd2+, the bacterial strains stim-
ulated the biomass by 43–80% and the fungus stim-
ulated the biomass by 50–62% (Fig. 2). The root bio-
masses revealed the inhibitory effect of the control
medium when it was inoculated with Massilia sp.
III-116-18 and Clitocybe sp. (20% and 30%, respec-
tively). The same strains had a stimulatory effect on
the root biomass in the medium supplemented with
Cd2+ (15% and 35%, respectively). Pseudomonas

TABLE 1. Microbiologically stimulated biomass of S. viminalis (leaves, shoots, roots) in the medium without (-Cd) or
with addition of Cd2+ (+Cd). (n=5; mean in mg (standard deviation), *p≤0.05) 

↑ or ↓ – significant increase or decrease in biomass compared to control – uninoculated plants (p≤0.05) (U Mann Whitney test); * – sig-
nificant difference compared to the control variant (inoculated with the respective microbe but unsupplemented with Cd2+) (U Mann
Whitney test).
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sp. IV-111-14 bacteria did not affect the biomass of
the roots growing in both -Cd and +Cd media
(growth stimulation at 2% compared with the
uninoculated variant).

The analysis of Cd2+ that accumulated in the
biomass (leaves, shoots and roots) revealed the sig-
nificant stimulatory effect of inoculation (with the

exception of shoots in the variant of plants inoculat-
ed with Clitocybe sp.) (Tab. 2). In the case of leaves
and roots, microorganisms significantly increased
the Cd2+ concentration in the biomass of the inocu-
lated plants and in shoots, the Cd2+ level depended
on the microbial strain: the concentration decreased
with Massilia sp. III-116-18, it increased for
Pseudomonas sp. IV-111-14 and Clitocybe sp. did
not influence the Cd2+ concentration. 

The bioconcentration factor (BCF) was deter-
mined as the Cd2+ concentration in the biomass
(leaves, shoots and roots)/Cd2+ concentration in the
culture medium, depending on the microorganism
used for inoculation as well as the analysed plant
organ. Pseudomonas sp. IV-111-14 decreased the
BCF in the leaves and increased it in the shoots and
roots. Massilia sp. III-116-18 only decreased the
BCF in the shoots, and the Clitocybe sp. fungus did
not affect this parameter in the shoots, leaves or
roots (Tab. 2). 

An analysis of the Cd2+ translocation index
from the roots to the aboveground parts revealed a
significant inhibitory effect of inoculation only in the
leaves of plants inoculated with Pseudomonas sp.
IV-111-14 (Tab. 2).

An analysis of the H2O2 level under the micro-
biological stimulation of the phytoextraction process
revealed significantly higher levels in all the plant tis-
sues inoculated with the Clitocybe sp. fungus when
exposed to a 1 mM Cd2+ concentration (Tab. 3). The
increase in the percentage of H2O2 in the leaves,
shoots and roots of the inoculated plants in relation
to the control plants ranged from 35% to 112% 
(Fig. 3b). When the medium was not supplemented
with Cd2+ (-Cd) and the plants were inoculated with
saprophytic fungus, there was a significantly higher
level of H2O2 only in the leaves and shoots (1729.5
and 3983.8 ng/g of fresh weight, respectively) 
(Tab. 3). For the bacterial strains, we recorded a sig-

FFiigg..  22. Microbiologically stimulated biomass of S. vimi-
nalis (leaves, shoots, roots) in the medium without Cd2+

(-Cd) (aa) or with addition of Cd2+ (+Cd) (bb) presented as
mean percentage values (%) compared to the uninoculated
control (n=5; mean ± standard deviation, *p≤0.05)

TABLE 2. Factors of phytoremediation efficiency: quantity of accumulated Cd (Q), bioconcentration factor (BCF), and
translocation index (Ti) in the microbiologically stimulated biomass of S. viminalis (leaves, shoots, roots) in the medi-
um with addition of Cd (+Cd) (n=5; mean (standard deviation), *p≤0.05). 

Q – quantity of accumulated Cd in μg; BCF – bioconcentration factor: Cd concentration in the biomass (leaves, shoots, roots)/ Cd con-
centration in the medium; Ti – translocation index: Cd concentration in the biomass of leaves and shoots/ Cd concentration in the roots;
↑ or ↓ – see Table 1.
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nificant inhibitory effect of the inoculation on the
H2O2 quantity in the leaves and roots of plants grow-
ing in the medium not supplemented with Cd2+

(-Cd) (Tab. 3). The H2O2 levels were 60% (Massilia
sp. III-116-18) and 38% (Pseudomonas sp. IV-111-
14) higher in the leaves and 48% (Massilia sp. III-
116-18) and 38% (Pseudomonas sp. IV-111-14)
higher in the roots (Fig. 3). The inoculation of plants
with bacterial strains in the media supplemented
with Cd2+ resulted in significant increase in H2O2
synthesis only in the leaves (812.3 ng/g fresh
weight for Massilia sp. III-116-18 and 625.3 ng/g
fresh weight for Pseudomonas sp. IV-111-14)
(Tab. 3).

An analysis of the metal's influence on the H2O2
synthesis level revealed a significant decrease in all
the investigated plant tissues in uninoculated willow
and in the aboveground parts (leaves and shoots) of
the plants inoculated with Clitocybe sp. compared
with the -Cd variants. In the variants inoculated with
bacterial strains, a similar decrease was noted only
for the shoots of plants growing in the presence of
Pseudomonas sp. IV-111-14. In plants inoculated
with Massilia sp. III-116-18, the presence of Cd2+ in
the medium caused a significant increase in the syn-
thesis of H2O2 in both leaves and roots (Tab. 3). 

As a result of a linear correlation analysis of the
H2O2 level with other measured parameters, a sig-
nificant correlation was noted only for the leaves. A
higher quantity of hydrogen peroxide was accompa-
nied by higher biomass growth (in terms of the dry
biomass and the percentage change in biomass
compared with the uninoculated variant) as well as
by a greater total quantity of accumulated Cd2+

(Tab. 4). Moreover, in all the analysed plant organs
(leaves, shoots and roots), we observed a significant
correlation of the accumulated Cd2+ with the bio-
concentration factor (BCF) as well as a correlation of
the total quantity of metal accumulated in the bio-

mass of leaves and roots with the concentration of
Cd2+ and BCF for shoots (Tab. 4).

An ITS phylogenetic tree was constructed on the
basis of a BLAST search of the ITS sequences with-
in NCBI database to identify the closest evolutionary
relative of the investigated fungus strain. An NJ tree

TABLE 3. The influence of inoculation with bacteria (Massilia sp. III-116-18 and B2 – Pseudomonas sp. IV-111-14) and
the saprophytic fungus (Clitocybe sp.) on the level of hydrogen peroxide synthesis in the leaves, shoots and roots of 
S. viminalis clones growing in the medium without (-Cd) or with addition of Cd2+ (+Cd) in the in vitro culture expressed
as ng H2O2 per gram of fresh weight of biomass (mean (standard deviation), n=5, *p≤0.05).

Abbreviations: see Table 1

FFiigg..  33. Hydrogen peroxide (H2O2) synthesis in the micro-
biologically stimulated biomass (leaves, shoots and roots)
of S. viminalis clones growing without (aa) or in presence
(bb) of Cd2+ in the culture medium. The level of hydrogen
peroxide was presented as percentage stimulation or inhi-
bition compared to the control (100%) representing
uninoculated plants growing in the medium without (a) or
with addition of Cd2+ (b) (mean  standard deviation).
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(Fig. 1) clearly showed a membership within the
genus Clitocybe with the closest relative to C. sub-
ditopoda [EU669216], C. cerrusata [KJ680972] as
well as C. phyllophila [KJ680981] and C. phyl-
lophila [KJ680980].

DISCUSSION

In the experiments performed in this work both
investigated bacterial strains (Massilia sp. III-116-
18 and Pseudomonas sp. IV-111-14) and the
saprophytic fungus (Clitocybe sp.) were revealed to
increase the total amount of Cd2+ that significantly
accumulated in the biomass of the roots and
leaves. The observations by Dos Santos Utmazian
et al. (2007), who studied the effects of inoculating
with Cadophora finlandica mycorrhizal fungus
and indigenous soil microorganisms on the accu-
mulation of Cd and Zn by S. smithiana and 
S. caprea, were opposite. These researchers
revealed that heavy metal contents of the biomass
were generally lower in inoculated plants compared
with uninoculated control variants. Simultaneously,
they noted a significant increase in the value of Cd
bioconcentration for S. smithiana when it was inoc-
ulated with fungus and microorganisms as well as

for S. caprea inoculated with microorganisms only.
On this basis, the researchers formed the hypothe-
sis that a higher bioconcentration factor may indi-
cate the contribution of bacterial secretions 
(i.e. siderophores) in increasing Cd availability to
willows (Whiting et al., 2001; Abou-Shanab et al.,
2003). Dimpka et al. (2009) revealed that the
siderophores synthesized by Streptomyces tendae
strain F4 significantly enhanced Cd2+ uptake by
sunflowers. A similar effect was noted by Sheng et
al. (2008) for tomato, maize and rape plants inoc-
ulated with Bacillus sp. J119, demonstrating the
ability to synthesize biosurfactants (lipopeptide). In
our studies, higher Cd2+ contents in the plant bio-
mass (compared with uninoculated plants) were
not accompanied by an increase in the BCF factor.
This finding suggests that under conditions of high
availability of the metal, which appeared in the cul-
ture medium, the effect of microbial secretions in
increasing the heavy metal bioavailability is less
important than in the case of soil. Weyens et al.
(2013) revealed that inoculating the roots with
selected rhizobacteria and endophytes (for high
Cd2+ resistance and activity from the synthesis of
siderophores, organic acids and IAA) isolated from
a Salix schwerinii × S. viminalis cv. Tora clone
growing in metalliferous areas caused decreased

TABLE 4. Analysis of the correlation between investigated parameters: level of H2O2 synthesis, biomass (DW), percent-
age increase/decrease of biomass (DWΔ%), quantity of accumulated Cd2+(Q), and bioconcentration factor (BCF) deter-
mined in the leaves, shoots and roots of willow S. viminalis in the presence of 1mM Cd2+ in the medium. Bold type –
significant correlation (linear correlation coefficient r/ p level; n=4).
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phytoextraction efficiency in soil contaminated with
Cd2+ and toluene. Moreover, a single inoculation
with the selected strains decreased the Cd2+ con-
tents in both the leaves and roots of the investigated
willows. The researchers noted that the characteris-
tic physiological abilities of the strains are not suffi-
cient for predicting their impact on the host plant.
This observation may also indicate the appropriate-
ness of using in vitro experiments involving both
plants and microorganisms, which (as a selection
step) should precede more time-consuming pot and
field experiments. 

Not the least important factor in describing
heavy metal phytoextraction efficiency and deter-
mining the potential of plant-microorganism sys-
tems is the biomass value. When inoculating with
the selected microorganisms in both control media
and Cd2+ exposure treatments in our experiment,
the biomass of the aboveground parts (leaves and
shoots) of S. viminalis significantly increased com-
pared with the uninoculated plants. Interestingly,
while Pseudomonas sp. IV-111-14 demonstrated
the highest stimulation of leaf and shoot growth
under control conditions, Massilia sp. III-116-18
was the most effective at promoting plant growth in
the medium supplemented with Cd2+. This result
corresponds with our earlier observations
(Hrynkiewicz et al., 2015), in which a higher bio-
mass of bacterial cells and higher effectiveness in
terms of Cd2+ accumulation were noted for Massilia
sp. III-116-18. In literature, there are numerous
examples of stimulating effects of bacteria on plant
growth in the presence of Cd2+ (e.g., Belimov et al.,
2005; Tripathi et al., 2005; Zimmer et al., 2009).
This knowledge is far scarcer in the case of sapro-
phytic fungi, and detailed studies addressing their
influence on plant growth (including different willow
species) under heavy metal exposure is still lacking.
In one of few studies, Adams et al. (2007) investigat-
ed the influence of inoculation with Trichoderma
harzianum Rifai 1295-22 on the growth of S. frag-
ilis in soil polluted with heavy metals including Cd
(30 mg/kg of dry weight of soil). The researchers
noted significant stimulation of S. fragilis growth
after inoculating the plants with the fungal strain
(39% higher dry biomass compared to the control).
Because the experiment was conducted in soil, the
influence of T. harzianum may be a combination of
the direct impact of the fungus on the plant, interac-
tions with microorganisms present in the soil and
the stimulation of nutrient uptake by the fungal
strain. Moreover, the authors noted lower stimula-
tion of S. fragilis growth in heavy-metal-contaminat-
ed soil compared with the control soil. The
increased metal content in the leaves and roots of
plants inoculated with T. harzianum may suggest
the essential role of the fungus in enhancing heavy
metal ion uptake by plants. These observations are

consistent with the results of our research, in which
inoculating with the saprophytic fungus Clitocybe sp.
caused a simultaneous increase in the biomass of
leaves, shoots and roots of S. viminalis, as well as
an increase in the Cd2+ content of the leaves and
roots, compared with the uninoculated plants. This
effect was particularly visible for root biomass. In
the control medium, inoculating with Clitocybe sp.
inhibited root growth, and when the plants were
exposed to metal ions, this effect was changed to sig-
nificant stimulation. Our work showed stimulation
of biomass production and Cd2+ accumulation
resulting from the direct influence of Clitocybe sp.,
which suggests that the mechanisms responsible for
this effect should be investigated in the future.

The analysis of H2O2 synthesis in the plant tis-
sues of willows growing in in vitro cultures revealed
a significant decrease in the H2O2 level in the
uninoculated plants (control) under Cd2+ exposure
in both the aboveground organs and roots. This
finding contrasts with the results of previous stud-
ies, which address the ability of Cd2+ to elicit oxida-
tive stress in plants, and the general view is that the
H2O2 level increased under Cd2+ stress
(Schützendübel and Polle, 2002). In pine roots at 
5–50 μM CdSO4 (Schützendübel and Polle, 2002), in
the roots, wood, bark and leaves of Populus
canescens at 0–50 μM CdSO4 (He et al., 2011), or in
the roots and leaves of Sedum alfredii at 
1.5–400 μM CdCl2 (Jin et al., 2008) the hydrogen
peroxide levels increased under the influence of
Cd2+. In contrast to the aforementioned studies, we
used a higher (1 mM) Cd2+ concentration to chal-
lenge the plants in this study. However, it should be
noted that hydrogen peroxide, in addition to con-
tributing to oxidative stress, also plays an important
role in many physiological processes, such as form-
ing vascular bundles in the xylem, lignifying cell
walls, cell elongation (i.e., root hairs) or the proper
functioning of stomata (Teichmann, 2001; Cheng
and Song, 2006; Nanda et al., 2010). Moreover, con-
sidering the relatively high Cd2+ concentration used
in our experiment, the decrease in H2O2 synthesis in
the tissues of uninoculated plants may reflect the
arrest of growth and metabolic activity as an early
response to the supplementation of the growth
medium with the high metal concentration. This
explanation was reflected in the nearly three times
lower growth of the root biomass in the uninoculat-
ed plants in the medium with added Cd2+. However,
inoculating with the saprophytic fungus Clitocybe sp.
caused a significant stimulation of H2O2 synthesis
compared with uninoculated plants both in the con-
trol medium (leaves and shoots) and in the presence
of 1 mM Cd2+ (all organs). This effect is particularly
visible in the roots, in which significant increases in
the H2O2 level were accompanied by increases in the
total quantity of accumulated Cd2+ and plant bio-
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mass. Nanda et al. (2010) observed that at the early
stage of both symbiotic and pathogenic interactions
between plants and microorganisms, transient
increases in ROS production can occur in the plant
organs. The elevated H2O2 accumulation in the cells
was noted, e.g., in Medicago truncatula during the
formation of mycorrhizal associations with the fun-
gus Glomus intraradices (Salzer et al., 1999) or in
Castanea sativa with Pisolithus tinctorius (Baptista
et al., 2007). In light of these findings, the increased
H2O2 levels in willows inoculated with Clitocybe sp.
fungus is likely to be an early response of the plant
to root colonization by the fungus rather than a
stress response to the presence of Cd ions, which is
indicated by the simultaneous stimulation of growth
and the efficiency of metal accumulation in the plant
biomass. Similar findings were reported for the
leaves of plants inoculated with the studied bacteri-
al strains in the medium supplemented with this
metal.

CONCLUSIONS

In our studies, the selected microbial strains gener-
ally stimulated both biomass and the parameters of
phytoextraction efficiency (when measured as Q,
BCF and Ti) in the in vitro cultures of S. viminalis
supplemented with Cd2+; however, they were strain
and plant organ specific. We suggest that increased
H2O2 levels in the uninoculated plants in the pres-
ence of Cd2+ can be caused by the general negative
impact of this metal on plant growth. Increasing
H2O2 synthesis in the biomass of inoculated plants
growing under the influence of Cd2+ indicates the
beneficial effects of microorganisms on the plant
growth. Because of the lack of similar studies in lit-
erature, we plan to continue similar experiments but
at lower Cd2+ concentrations in the medium. The
significant stimulation of biomass growth and the
amount of accumulated metal after inoculating the
plants with the saprophytic fungus Clitocybe sp.
indicates its potential for recultivation of Cd2+-con-
taminated areas and suggests the appropriateness of
research on saprophytic fungal species in the con-
text of their application to phytoremediation
processes.
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