PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Arsenic trioxide induces apoptosis and the formation of reactive oxygen species in rat glioma cells

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Arsenic trioxide (As2O3) has a dramatic therapeutic effect on acute promyelocytic leukemia (APL) patients. It can also cause apoptosis in various tumor cells. This study investigated whether As2O3 has an antitumor effect on glioma and explored the underlying mechanism. Results: MTT and trypan blue assays showed that As2O3 remarkably inhibited growth of C6 and 9 L glioma cells. Cell viability decreased in glioma cells to a greater extent than in normal glia cells. The annexin V-FITC/PI and Hoechest/PI staining assays revealed a significant increase in apoptosis that correlated with the duration of As2O3 treatment and occurred in glioma cells to a greater extent than in normal glial cells. As2O3 treatment induced reactive oxygen species (ROS) production in C6 and 9 L cells in a time-dependent manner. Cells pretreated with the antioxidant N-acetylcysteine (NAC) showed significantly lower As2O3-induced ROS generation. As2O3 significantly inhibited the expression of the anti-apoptotic gene Bcl-2, and upregulated the proapoptotic gene Bax in both C6 and 9 L glioma cells in a time-dependent manner. Conclusions: As2O3 can significantly inhibit the growth of glioma cells and it can induce cell apoptosis in a time- and concentration-dependent manner. ROS were found to be responsible for apoptosis in glioma cells induced by As2O3. These results suggest As2O3 is a promising agent for the treatment of glioma.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-10,fig.,ref.

Twórcy

autor
  • Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin 150000, China
autor
  • Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin 150000, China
autor
  • Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin 150000, China
autor
  • Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin 150000, China
autor
  • Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin 150000, China

Bibliografia

  • 1. Mervis J. Ancient remedy performs new tricks. Science. 1996;273:578.
  • 2. Nellessen CM, Janzen V, Mayer K, Giovannini G, Gembruch U, Brossart P, Merz WM. Successful treatment of acute promyelocytic leukemia in pregnancy with single-agent all-trans retinoic acid. Arch Gynecol Obstet. 2017; https:// doi.org/10.1007/s00404-017-4583-6.
  • 3. Hassani S, Khaleghian A, Ahmadian S, Alizadeh S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4). Ann Hematol. 2017; https://doi.org/10.1007/s00277-017-3163-y.
  • 4. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood. 1996;88:1052–61.
  • 5. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, Liu MM, He KL, Niu C, Ma J, Zhang P, Zhang TD, Paul P, Naoe T, Kitamura K, Miller W, Waxman S, Wang ZY, De The H, Chen SJ, Chen Z. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997;89:3345–53.
  • 6. Zhang P, Zhao X, Zhang W, He A, Lei B, Zhang W, Chen Y. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/beta-catenin signaling pathway. PLoS One. 2017;12:e0186868. https://doi.org/10.1371/journal.pone.0186868.
  • 7. Zhang F, Zhang CM, Li S, Wang KK, Guo BB, Fu Y, Liu LY, Zhang Y, Jiang HY, Wu CJ. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis. Mol Med Rep. 2018;17:1573–82. https://doi.org/10.3892/mmr.2017.8046.
  • 8. Zeng Y, Liu X, Yan Z, Xie L. Sphingosine 1-phosphate regulates proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells via syndecan-1. Prog Biophys Mol Biol. 2017; https://doi.org/10.1016/j.pbiomolbio. 2017.11.006.
  • 9. Wang GB, Liu JH, Hu J, Xue K. Mechanism of As2O3 induces apoptosis of glioma U87 cells. Eur Rev Med Pharmacol Sci. 2017;21:4875–81.
  • 10. Pan L, Li Y, Zhang HY, Zheng Y, Liu XL, Hu Z, Wang Y, Wang J, Cai YH, Liu Q, Chen WL, Guo Y, Huang YM, Qian F, Jin L, Wang J, Wang SY. DHX15 is associated with poor prognosis in acute myeloid leukemia (AML) and regulates cell apoptosis via the NF-kB signaling pathway. Oncotarget. 2017;8:89643–54. https://doi.org/10.18632/oncotarget. 20288.
  • 11. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman Arsenic S. Trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999;94:2102–11.
  • 12. Yi J, Yang J, He R, Gao F, Sang H, Tang X, Ye RD. Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res. 2004;64:108–16.
  • 13. Maeda H, Hori S, Nishitoh H, Ichijo H, Ogawa O, Kakehi Y, Kakizuka Tumor A. Growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res. 2001;61:5432–40.
  • 14. Kajiguchi T, Yamamoto K, Hossain K, Akhand AA, Nakashima I, Naoe T, Saito H, Emi Sustained N. Activation of cjun-terminal kinase (JNK) is closely related to arsenic trioxide-induced apoptosis in an acute myeloid leukemia (M2)-derived cell line, NKM-1. Leukemia. 2003;17:2189–95. https://doi.org/10.1038/sj.leu.2403120.
  • 15. Cheng Y, Li Y, Ma C, Song Y, Xu H, Yu H, Xu S, Mu Q, Li H, Chen Y, Zhao G. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction. Oncotarget. 2016;7:12682–92. https://doi.org/10.18632/oncotarget.7259.
  • 16. Xia ZB, Wu XJ, Qi TW, Huang ZS. Study on inhibitory effect of arsenic trioxide on growth of rat C6 glioma cells. Zhongguo Zhong Yao Za Zhi. 2008;33:2150–3.
  • 17. Xu Y, Zhang Y, Liu X, Wang Z, Ma J, Wang J, Yue The W. Effects of ultrasound and arsenic trioxide on neurogliocytoma cells and secondary activation of macrophages. Tumori. 2009;95:780–8.
  • 18. Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21:3609–15. https://doi.org/10.1200/JCO.2003.10.009.
  • 19. Huang SY, Chang CS, Tang JL, Tien HF, Kuo TL, Huang SF, Yao YT, Chou WC, Chung CY, Wang CH, Shen MC, Chen YC. Acute and chronic arsenic poisoning associated with treatment of acute promyelocytic leukaemia. Br J Haematol. 1998;103:1092–5.
  • 20. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980;85:890–902.
  • 21. Tan Z, Jia X, Ma F, Feng Y, Lu H, Jin JO, Wu D, Yin L, Liu L, Zhang L. Increased MMAB level in mitochondria as a novel biomarker of hepatotoxicity induced by Efavirenz. PLoS One. 2017;12:e0188366. https://doi.org/10.1371/ journal.pone.0188366.
  • 22. Yi D, Hou Y, Xiao H, Wang L, Zhang Y, Chen H, Wu T, Ding B, Hu CA, Wu G. N-acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways. Amino Acids. 2017;49: 1915–29. https://doi.org/10.1007/s00726-017-2389-2.
  • 23. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, Feng T, Wu J, Liu X. Sphingosine-1-phosphate induced epithelialmesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-beta autocrine loop. Oncotarget. 2016;7:63324–37. https://doi.org/10.18632/oncotarget.11450.
  • 24. Klinger PH, Andrade AF, Delsin LE, Queiroz RG, Scrideli CA, Tone LG, Valera ET. Inhibition of SHH pathway mechanisms by arsenic trioxide in pediatric medulloblastomas: a comprehensive literature review. Genet Mol Res. 2017;16 https://doi.org/10.4238/gmr16019412.
  • 25. Chang HR, Munkhjargal A, Kim MJ, Park SY, Jung E, Ryu JH, Yang Y, Lim JS, Kim Y. The functional roles of PML nuclear bodies in genome maintenance. Mutat Res. 2017; https://doi.org/10.1016/j.mrfmmm.2017.05.002.
  • 26. Zhao S, Tsuchida T, Kawakami K, Shi C, Kawamoto K. Effect of As2O3 on cell cycle progression and cyclins D1 and B1 expression in two glioblastoma cell lines differing in p53 status. Int J Oncol. 2002;21:49–55.
  • 27. Akao Y, Nakagawa Y, Akiyama K. Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett. 1999;455:59–62. S0014-5793(99)00841-8
  • 28. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I. Induction Of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 2003;63:2103–8.
  • 29. Chakraborti T, Das S, Mondal M, Roychoudhury S, Chakraborti S. Oxidant Mitochondria and calcium: an overview. Cell Signal. 1999;11:77–85. S0898-6568(98)00025-4
  • 30. Forman HJ, Torres Reactive M. Oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166:S4–8. https://doi.org/10.1164/rccm.2206007 166/12 Pt 2/S4.
  • 31. Pucer A, Castino R, Mirkovic B, Falnoga I, Slejkovec Z, Isidoro C, Lah TT. Differential Role of cathepsins B and L in autophagy-associated cell death induced by arsenic trioxide in U87 human glioblastoma cells. Biol Chem. 2010; 391:519–31. https://doi.org/10.1515/bc.2010.050.
  • 32. Primon M, Huszthy PC, Motaln H, Talasila KM, Torkar A, Bjerkvig R, Lah Turnsek T. Cathepsin L silencing enhances arsenic trioxide mediated in vitro cytotoxicity and apoptosis in glioblastoma U87MG spheroids. Exp Cell Res. 2013; 319:2637–48. https://doi.org/10.1016/j.yexcr.2013.08.011.
  • 33. Klauser E, Gulden M, Maser E, Seibert S, Seibert H. Additivity, antagonism, and synergy in arsenic trioxide-induced growth inhibition of C6 glioma cells: effects of genistein, quercetin and buthionine-sulfoximine. Food Chem Toxicol. 2014;67:212–21. https://doi.org/10.1016/j.fct.2014.02.039.
  • 34. Wang C, Chen X, Zou H, Chen X, Liu Y, Zhao S. The roles of mitoferrin-2 in the process of arsenic trioxide-induced cell damage in human gliomas. Eur J Med Res. 2014;19:49. https://doi.org/10.1186/s40001-014-0049-5.
  • 35. Gerlach M, Ben-Shachar D, Riederer P, Youdim MB. Altered Brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem. 1994;63:793–807.
  • 36. Kitazawa H, Numakawa T, Adachi N, Kumamaru E, Tuerxun T, Kudo M, Kunugi H. Cyclophosphamide promotes cell survival via activation of intracellular signaling in cultured cortical neurons. Neurosci Lett. 2010;470:139–44. https:// doi.org/10.1016/j.neulet.2009.12.073. S0304-3940(09)01677-2
  • 37. Bauer G. Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res. 2000;20:4115–39.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eff45b22-6d2d-40f3-8637-347cfeaa80a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.