PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 3 |

Tytuł artykułu

Plant extract enhanced ruminal CLA concentration, in vitro

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of adding plant extracts to ruminal fluid on the formation of conjugated linoleic acid (CLA) isomers and on fermentation parameters was evaluated. Initially, fifteen plant extracts at two levels (1 and 2 mg · ml–1 buffered rumen fluid; BRF) were incubated with BRF and substrate (hay and concentrate, 50:50) at 39°C for 24 h, in a completely randomized block design. In the second experiment, four promising plant extracts affecting the formation of CLA and vaccenic acid (VA) were tested for their influence on basal parameters of rumen fermentation. The first study revealed that extracts of Azadirachta indica, Allium sativum, Cuminum cyminum at the lower level (1 mg · ml–1) and extracts of Terminalia chebula at the higher level (2 mg · ml–1) enhanced CLA isomer formation by 45.56%, 41.54%, 51.09%, and 15.54%, respectively, and the VA concentration by 10.97%, 10.82%, 14.93%, and 29.61%, respectively, in ruminal fluid when compared with the control (p < 0.05). The second experiment documented that the selected plant extracts did not impair nutrient fermentation. Nonetheless, addition of C. cyminum extract to ruminal fluid increased the partitioning factor (p = 0.054) and the digestibility of nutrients (p < 0.05). Furthermore, the polyunsaturated fatty acid concentration was higher when ruminal fluid was incubated with the C. cyminum extract (p = 0.049). In conclusion, extracts of Azadirachta indica, Allium sativum, Cuminum cyminum and Terminalia chebula modulate ruminal biohydrogenation and increase the concentrations of CLA isomers, their precursors, and VA without negatively affecting other rumen parameters. Cuminum cyminum did, however, improve the pattern of nutrient fermentation and can be considered a valuable supplement in ruminant nutrition to enhance the healthiness of ruminant meat and milk.

Wydawca

-

Rocznik

Tom

22

Numer

3

Opis fizyczny

p.219-228,fig.,ref.

Twórcy

  • Department of Dairy Cattle Nutrition, National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
  • Department of Animal Sciences, Ferdowski University of Mashhad, Mashhad, Iran
autor
  • Department of Dairy Cattle Nutrition, National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
  • Department of Dairy Cattle Nutrition, National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
  • Department of Animal Sciences, Ferdowski University of Mashhad, Mashhad, Iran
autor
  • Department of Dairy Cattle Nutrition, National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India

Bibliografia

  • Amagase H., 2006. Clarifying the real bioactive constituents of garlic. J. Nutr. 136, 716S–725S
  • AOAC, 2000. Association of Official Analytical Chemists, Official Methods of Analysis. 17th Edition. Arlington, VA
  • Azeez S., 2008. Cumin. In: V.A. Parthasarathy, B. Chempakam, T.J. Zachariah (Editors). Chemistry of Spices. CABI, London, pp. 211−226
  • Blümmel M., Givens D.I., Moss A.R., 2005. Comparison of methane produced by straw fed sheep in open-circuit respiration with methane predicted by fermentation characteristics measured by an in vitro gas procedure. Anim. Feed Sci. Tech. 123-124, 379−390
  • Blümmel M., Mgomezulu R., Chen X.B., Makkar H.P.S., Becker K., Ørskov E.R., 1999. The modification of an in vitro gas production test to detect roughage related differences in in vivo microbial protein synthesis as estimated by the excretion of purine derivatives. J. Agr. Sci. 133, 335−340
  • Chiquette J., Benchaar C., 2005. Effects of different dose levels of essential oils compounds on in vitro methane production by mixed ruminal bacteria. J. Dairy Sci., Suppl. 1., 305 (Abstr.)
  • García-González R., López S., Fernández M., Bodas R., González J.S., 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim. Feed Sci. Tech. 147, 36−52
  • Griinari J.M., Corl B.A., Lacy S.H., Chouinard P.Y., Nurmela K.V.V., Bauman D.E., 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta9-desaturase. J. Nutr. 130, 2285−2291
  • Harfoot C., Hazlewood G., 1997. Lipid metabolism in the rumen. In: P.N. Hobson, C.S. Stewart (Editors). The Rumen Microbial Ecosystem. London: Chapman and Hall, pp. 382−426
  • Hess H.D., Tiemann T.T., Noto F., Carulla J.E., Kreuzer M., 2005. Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congress Series 1293, 164–167
  • Hiai S., Oura H., Nakajima T., 1976. Color reaction of some sapogenins and saponins with vanillin and sulphuric acid. Plant Med. 29, 116−122
  • Huws S.A., Kim E.J., Lee M.R.F., Scott M.B., Tweed J.K.S., Pinloche E., Wallace R.J., Scollan N.D., 2011. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 13, 1500−1512
  • Iacobellis N.S., Lo Cantore P., Capasso F., Senatore F., 2005. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J. Agr. Food Chem. 53, 57−61
  • Ip C., Chin S.F., Scimeca J.A., Pariza M.W., 1991. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res. 51, 6118−6124
  • Joshi B., Sah G.P., Basnet B.B., Bhatt M.R., Sharma D., Subedi K., Pandey J., Malla R., 2011. Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). J. Microbiol. Antimicrob. 3, 1−7
  • Kamra D.N., Agarwal N., Chaudhary L.C., 2006. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int. Congress Series 1293, 156−163
  • Khan M.M.H., Chaudhry A.S., 2010. Chemical composition of selected forages and spices and the effect of these spices on in vitro rumen degradability of some forages. Asian-Austr. J. Anim. Sci. 23, 889−900
  • Khiaosa-Ard R., Bryner S.F., Scheeder M.R.L., Wettstein H.R., Leiber F., Kreuzer M., Soliva C.R., 2009. Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92, 177−188
  • Kim Y.J., 2003. Partial inhibition of biohydrogenation of linoleic acid can increase the conjugated linoleic acid production of Butyrivibrio fibrisolvens A38. J. Agr. Food Chem. 51, 4258−4262
  • Lourenço M., De Smet S., Raes K., Fievez V., 2007a. Effect of botanical composition of silages on rumen fatty acid metabolism and fatty acid composition in longissimus muscle and subcutaneous fat of lambs. Animal 1, 911−921
  • Lourenço M., Van Ranst G., De Smet S., Raes K., Fievez V., 2007b. Effect of grazing pastures with different botanical composition by lambs on rumen fatty acid metabolism and fatty acid pattern of longissimus muscle and subcutaneous fat. Animal 1, 537−545
  • Maia M., Chaudhary L., Bestwick C., Richardson A., McKain N., Larson T., Graham I., Wallace R., 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 10, 52: doi 10.1186/1471-2180- 10-52
  • Makkar H.P.S., 2010. In vitro screening of feed resources for efficiency of microbial protein synthesis. In: P.E. Vercoe, H.P.S. Makkar, A.C. Schlink (Editors.). In vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies. Springer, Dordrecht/Heidelberg/London/New York, pp. 107−144
  • Makkar H.P.S., Blümmel M., Borowy N.K., Becker K., 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agr. 61, 161−165
  • Makkar H.P.S., Siddhuraju P., Becker K., 2007. Plant Secondary Metabolites. Humana Press Inc. Totowa, NJ (USA)
  • Martinez A., Church D.C., 1970. Effect of various mineral elements on in vitro rumen cellulose digestion. J. Anim. Sci. 31, 982−990
  • Menke K.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7−55
  • Moon C., Pacheco D., Kelly W., Leahy S., Li D., Kopecny J., Attwood G., 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int. J. Syst. Evol. Microbiol. 58, 2041−2045
  • O’Fallon J.V., Busboom J.R., Nelson M.L., Gaskins C.T., 2007. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 85, 1511−1521
  • Palmquist D.L., Lock A.L., Shingfield K.J., Bauman D.E., 2005. Biosynthesis of conjugated linoleic acid in ruminants and humans. in: L.T. Steve (Editor). Adv. Food Nut. Res. Acadmic Press, pp. 179−217
  • Patra A.K., Kamra D.N., Agarwal N., 2010. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agr. 90, 511−520
  • Rana M.S., Tyagi A., Hossain S.A., Tyagi A.K., 2012. Effect of tanniniferous Terminalia chebula extract on rumen bio-hydrogenation, ∆9-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids. Meat Sci. 90, 558−563
  • Terrill T.H., Rowan A.M., Douglas G.B., Barry T.N., 1992. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agr. 58, 321−329
  • Troegeler-Meynadier A., Bret-Bennis L., Enjalbert F., 2006. Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Reprod. Nutr. Develop. 46, 713−724
  • Vasta V., Mele M., Serra A., Scerra M., Luciano G., Lanza M., Priolo A., 2009. Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. J. Anim. Sci. 87, 2674−2684
  • Wallace J.R., Chaudhary L.C., McKain N., McEwan N.R., Richardson A.J., Vercoe P.E., Walker N.D., Paillard D., 2006. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett. 265, 195−201
  • Wood T.A., Ramos-Morales E., McKain N., Shen X., Atasoglu C., Wallace R.J., 2010. Chrysanthemum coronarium as a modulator of fatty acid biohydrogenation in the rumen. Anim. Feed Sci. Tech. 161, 28−37
  • Yang W.Z., Laurain J., Ametaj B.N., 2009. Neem oil modulates rumen fermentation properties in a continuous cultures system. Anim. Feed Sci. Tech. 149, 78−88

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eff319f2-7add-4643-8b00-43b02fb8d308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.