PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 1 |

Tytuł artykułu

The subsequent effect of silicon on physiological and biochemical parameters of Polygonatum multiflorum (L.) All. ‘Variegatum’ cut shoots

Treść / Zawartość

Warianty tytułu

Następczy wpływ krzemu na parametry fizjologiczne i biochemiczne ciętych pędów Polygonatum multiflorum (L.) All. ‘Variegatum’

Języki publikacji

EN

Abstrakty

EN
The aim of the undertaken research was to establish the subsequent effect of silicon, which is the component in Actisil Hydro Plus preparation, and the place of cultivation on the postharvest quality of Solomon’s Seal (Polygonatum multiflorum ‘Variegatum’). Plants were cultivated directly in the field or in an unheated foil tunnel. The preparation was used as a sixfold spray in three concentrations: 0.2, 0.3 and 0.4% during the plants vegetation, at weekly intervals. The control were plants sprayed with distilled water. Leafy shoots were cut at the moment of becoming morphologically mature and placed in distilled water in a controlled thermal-lightning conditions: temperature was 21/18ºC (day/night) and photoperiod of 12 h light/12 h darkness. The condition of cytoplasmic membrane was evaluated with the use of analysis of electrolyte leakage and determining the level of peroxidation of membrane lipids. The analyses of assimilation pigments (chlorophyll a + b) and proline content, the relative water content as well as postharvest longevity were established. Leafy shoots of P. multiflorum cultivated in an unheated tunnel, regardless of the spray with Actisil Hydro Plus, characterized with longer lasting decorative value. The lowest proline content in tissues after 30 days were observed in leaves obtained from plants cultivated in foil tunnel and sprayed with Actisil Hydro Plus in concentration of 0.2 and 0.3%. During the analysis conducted 30 days after starting the experiment, the most effective stop of membrane lipids peroxidation was observed in shoots obtained from plants cultivated in foil tunnel and sprayed with Actisil in concentration of 0.2%. Cultivation of P. multiflorum in foil tunnel and spray with preparation in concentration of 0.3% inhibited assimilation pigments degradation the most effectively.
PL
Celem podjętych badań było określenie następczego wpływu krzemu zawartego w preparacie Actisil Hydro Plus oraz miejsca uprawy na jakość pozbiorczą kokoryczki wielkokwiatowej (Polygonatum multiflorum ‘Variegatum’). Rośliny uprawiano bezpośrednio w polu oraz w nieogrzewanym tunelu foliowym. Preparat zastosowano w formie 6-krotnego oprysku w trzech stężeniach: 0,2; 0,3 i 0,4% w trakcie wegetacji roślin, w odstępach tygodniowych. Kontrolę stanowiły rośliny opryskane wodą destylowaną. Ulistnione pędy ścinano w momencie osiągnięcia dojrzałości morfologicznej, wstawiano do wody destylowanej i umieszczono w kontrolowanych warunkach termiczno-świetlnych: temperatura 21/18ºC (dzień/noc), przy fotoperiodzie 12 h światła/12 h ciemności. Oceniano stan błon cytoplazmatycznych poprzez analizę wypływu elektrolitów i oznaczenie poziomu peroksydacji lipidów błonowych. Przeprowadzono analizy zawartości barwników asymilacyjnych (chlorofilu a + b), proliny, a także określono względną zawartość wody i trwałość pozbiorczą. Dłuższym okresem dekoracyjności charakteryzowały się ulistnione pędy P. multiflorum uprawiane w nieogrzewanym tunelu foliowym, niezależnie od zastosowanego oprysku preparatem Actisil Hydro Plus. Najmniejszą ilością proliny po 30 dniach trwania eksperymentu charakteryzowały się liście pozyskane z roślin uprawianych w tunelu foliowym i opryskiwane roztworem Actisilu Hydro Plus w stężeniu 0,2 i 0,3%. Podczas analizy wykonanej po 30 dniach trwania eksperymentu stwierdzono najefektywniejsze zatrzymanie peroksydacji lipidów błonowych w wariancie, w którym pędy pozyskano z roślin uprawianych w tunelu foliowym i opryskano Actisilem w stężeniu 0,2%. Natomiast uprawa P. multiflorum w tunelu foliowym i oprysk preparatem w stężeniu 0,3%, najkorzystniej zahamowało degradację barwników asymilacyjnych.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

1

Opis fizyczny

p.167-178,ref.

Twórcy

  • Department of Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland

Bibliografia

  • Adamiak J., Hetman J., 2006. Dolistna aplikacja tytnu w uprawie okulantów róż odmiany ‘Flamingo’. Zesz. Probl. Post. Nauk Roln. 510, 25–30.
  • Babak J., Majid R., 2011. Carnation flowers senescence as influenced by nickel, cobalt and silicon. J. Biol. Environ. Sci. 5, 147–152.
  • Barrs H.D., 1968. Determination of water deficits in plant tissues. In: Water deficits and plant growth, Vol. I: Development, control and measurement, T.T. Kozlowski (ed.). Academic Press New York, 235–368.
  • Bates L.S., Waldren R.R., Teare I.D.,1973. Rapid determination of free proline or water-stress studies. Plant Soil 39, 205 – 207.
  • Belanger R.R., Benhamou N., Menzies J.G., 2003. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici). Phytopathology 93, 402–412.
  • Fauteux F., Remus-Borel W., Menzies J.G., 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 249, 1–6.
  • Fawe A., Abou-Zaid M., Menzies J.G., Belanger R.R., 1998. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88, 396–401.
  • Gong H., Zhu X., Chen K., Wang S., Zhang C., 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169, 313–321.
  • Heath R.L., Packer L., 1968. Effect of light on lipid peroxidation in chloroplasts. Biochem. Biophys. Res. Commun. 19, 716–720.
  • Jones R.B., Hill M., 1993. The effect of germicides on the longevity of cut flowers. J. Amer. Soc. Hort. Sci. 118, 350–354.
  • Kaya C., Tuna L., Higgs D., 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr. 29, 1469–1480.
  • Kazemi M., 2012. Effect of cobalt, silicon, acetylsalicylic acid and sucrose as novel agents to improve vase-life of Argyranthemum flowers. Trends App. Sci. Res. 7, 579–583.
  • Kazemi M., Asadi M., Aghdasi S., 2012a. Postharvest life of cut Lisianthus flowers as affected by silicon, malic acid and acetylsalicylic acid. Res. J. Soil. Biol. 4, 15–20.
  • Kazemi M., Gholami M., Asadi M., Aghdasi S., 2012b. Efficiency of silicon, nickel and acetylsalicylic acid reduced senescence and extended vase life of cut rose flowers. Trends App. Sci. Res. 7, 590–595.
  • Kazemi M., Gholami M., Bahmanipour F., 2012c. Effect of silicon and acetylsalicylic acid on antioxidant activity, membrane stability and ACC-oxidase activity in relations to vase life of carnation cut flowers. Biotechnology 11, 87–90.
  • Kościelniak J., 1993. Wpływ następczy temperatur chłodowych w termoperiodyzmie dobowym na produktywność fotosyntetyczną kukurydzy (Zea mays L.). Zesz. Nauk. AR Kraków, Rozpr. hab. 174.
  • Leurentz K., Wagstaff C., Rogers H.J., Stead A.D., Chanasul U., Silkowski H., Thomas B., wei C.H., Feussner I., Griffiths G., 2002. Characterization of a novel lipoxygenase independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol. 130, 273–283.
  • Liang Y., Chen Q., Liu Q., Zhang W., Ding R., 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160, 1157–1164. Lichtenthaler H.K., Wellburn A., 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603, 591–592.
  • Lü P., Cao J., He S., Liu J., Li H., Cheng G., Ding Y., Joyce D.C., 2010. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Post. Biol. Tech. 57, 196–202.
  • Ortiz M.A., Hyrczyk K., Lopez R.G., 2012. Comparizon of high tunnel and field production of specialty cut flowers in the Midwest. Hort. Sci. 47, 1265–1269.
  • Park S.Y., Yu J.W., Park J.S., Li J., Yoo S.C., Lee N.Y., Lee S.K., Jeong S.W., Seo H.S., Koh H.J., Jeon J.S., Park Y.I., Paek N.C., 2007. The senescence – induced staygreen regulates chlorophyll degradation. Plant Cell. 19, 1649–1664.
  • Pogroszewska E., Rubinowska K., Michałek W., 2009. Influence of selected growth regulators and chitosan on senescence of Paeonia lactiflora Pall. flowers. Ann. Warsaw Univ. Life Sci. – SGGW, Horticult. Landsc. Architect. 30, 31–39.
  • Remus-Borel W., Menzies J.G., Belanger R.R., 2005. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol. Mol. Plant Pathol. 66, 108–115.
  • Rodrigues F.A., McNally D.J., Datnoff L.E., Jones J.B., Labbe C., Benhamou N., Menzies J.G., Belanger R.R., 2004. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94, 177–183.
  • Rubinowska K., Michałek W., Pogroszewska E., 2012a. The effect of chemical substances on senescence of Weigela florida (Bunge) A. DC. ‘Variegata Nana’ cut stems. Acta Sci. Pol., Hortorum Cultus 11, 17–28.
  • Rubinowska K., Pogroszewska E., Michałek W., 2012b. The effect of polyamines on physiological parameters of post-harvest quality of cut stems of Rosa ‘Red Berlin’. Acta Sci. Pol., Hortorum Cultus 6, 81–94.
  • Sacała E., 2009. Role of silicon in plant resistance to water stress. J. Elementol. 14, 619–630.
  • Silva O.N., Lobato A.K.S., Avila F.W., Costa R.C.L., Oliveira Neto C.F., Santos Filho B.G., Martins Filho A.P., Lemos R.P., Pinho J.M., Medeiros M.B.C.L., Cardos M.S., Andrade I.P., 2012. Silicon-induced increase in chlorophyll is modulated by leaf water potential in two water-deficient tomato cultivars. Plant Soil Environ. 58, 481–486.
  • Skutnik E., Rabiza-Świder J., Wachowicz M., Łukaszewska A.J., 2004. Senescence of cut leaves of Zantedeschia aethiopica and Z. elliottiana. Part I. Chlorophyll degradation. Acta Sci. Pol., Hortorum Cultus 3, 57–65.
  • Skutnik E., Rabiza-Świder J., Łukaszewska A., 2006. Evaluation of several chemical agents for prolonging vase life in cut asparagus greens. J. Fruit Ornam. Plant Res. 14, 233–240.
  • Snyder G.H., Martichenkov V.V., Datnoff L.E., 2007. Silicone. In: Handbook of plant nutrition, A.V. Barker, D.J. Pilibean (eds). CRC Taylor and Francis, New York, USA, 551–568.
  • Startek L., Placek M., Wraga K., 2006. Wpływ preparatu Actisil na niektóre cechy chryzantem uprawianych w doniczkach. Zesz. Probl. Nauk Roln. 510, 619–626.
  • Tuna A.L., Kaya C., Higgs D., Murillo-Amador B., Aydemir S., Girgin A.R., 2008. Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot. 62, 10–16.
  • Wien H.C., 2009. Floral crop production in high tunnels. Hort. Tech. 19, 56–60.
  • Wien H.C., Pritts M.P., 2009. Use of high tunnels in the northern USA: Adaptation to cold climates. Acta Hort. 807, 55–59.
  • Zhu Z., Wei G., Li J., Qian Q., Yu J., 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167, 527–533.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-efba9b2b-66e9-4206-8890-cf2718f31b72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.