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ABSTRACT 

In time series, several competing models may adequately fit a given set of data. At times choosing 

the best model may be easy or difficult. However, there are two major model selection criteria; it could 

be either in-sample or out-of-sample forecasts. This study was necessitated because Empirical evidence 

based on out-of-sample model forecast performance is generally considered more trustworthy than 

evidence based on in-sample model performance which can be more sensitive to outliers and data 

mining. And also the fact that Out-of-sample forecasts also better reflect the information available to 

the forecaster in real time was also an added motivation. Hence this study considered data from Nigeria 

exchange rate (Naira to US Dollar) from January 2002 to December 2018 comprising 204 observations. 

The first 192 observations were used for model identification and estimation while the remaining 12 

observations were holdout for forecast validation. Three ARIMA models; ARIMA (0, 1, 1), ARIMA (1, 

1, 2) and ARIMA (2, 1, 0) were fitted tentatively. Base on in-sample information criteria ARIMA (0, 1, 

1) was the best model with minimum AIC, SIC and HQ information criteria. However, on the basics of 

out-of-sample forecast evaluation using RMSE, MSE, MAE, and MAPE, ARIMA (2, 1, 0) perform 

better than ARIMA (0, 1, 1). The implication of this study is that, a model that is best in the in-sample 

fitting may not necessary give a genuine forecasts since it is the same data that is used in model 

identification and estimation that is also use in forecast evaluation.   

 

Keyword: ARMA model, In-sample forecasting, Model selection and evaluation, Out-sample 

forecasting, Exchange Rate 
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1.  INTRODUCTION 

 

Time series modeling is a dynamic research area which has attracted attentions of research 

Community over last few decades. The main aim of time series modeling is to carefully collect 

and rigorously study the past observations of a time series to develop an appropriate model 

which describes the inherent structure of the series. This model is then used to generate future 

values for the series, i.e. to make forecasts. Time series forecasting thus can be termed as the 

act of predicting the future by understanding the past [15]. Due to the indispensable importance 

of time series forecasting in numerous practical fields such as business, economics, finance, 

science and engineering, and many more [18], proper care should be taken to fit an adequate 

model to the underlying time series. It is obvious that a successful time series forecasting 

depends on an appropriate model fitting. A lot of efforts have been done by researchers over 

the years for the development of efficient models to improve the forecasting accuracy. As a 

result, various important time series forecasting models have evolved over the years. 

One of the most popular and frequently used stochastic time series models is the 

Autoregressive Integrated Moving Average (ARIMA), [2] model. The basic assumption made 

to implement this model is that the considered time series is linear and follows a particular 

known statistical distribution, such as the normal distribution. ARIMA model has subclasses of 

other models, such as the Autoregressive (AR) [6], Moving Average (MA) [2] and 

Autoregressive Moving Average (ARMA) [2] models. 

Although the essence of modeling in time series is to use the model to forecast future, 

forecasting is also useful in model selection and evaluation when there are several competing 

models. These competing models are compared in terms of goodness of fit (in sample fit) and 

forecasting power (out of sample forecast) [9]. The in sample fit criteria for selection of model 

are Alkaike’s information criteria (AIC), Schwartz’s information criteria, and Hannan and 

Quinn information criteria [17].  

On the other hand, [4] provides an excellent opportunity to look at what is called out of 

sample behaviour of time series data. That is, a time series will provide forecast of new future 

observation which can be check against what is actually observed. Meanwhile the out of sample 

forecast is accomplished when the data used for constructing the model are different from that 

used in forecasting evaluation. That is, the data is divided into two portions. The first portion is 

for model construction and the second portion is used for evaluating model performance with 

possibility of forecasting new observations which can be checked against what is observed [4 

& 16]. Hence in this study we dwell on model section based on the ability to of the model to 

forecast future values using the data on Naira to dollar exchange rate.  

In Nigeria several authors have applied in- sample information criteria for model selection 

on Naira to US Dollar exchange rate. Given the advantages of out-of-sample model selection 

over in-sample model selection this work will be an improvement on studies of [1, 5, 8, 11, 12, 

14] and several others.       

 

 

2.  MATERIALS AND METHODS 

2. 1. An Autoregressive Process AR (p) 

Autoregressive models are based on the idea that the current value of the series Et  can 

be explained as a function of p past values, 𝐸𝑡−1, 𝐸𝑡−2,. . . 𝐸𝑡−𝑝, where p determines the number 
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of steps into the past needed to forecast the current value. An autoregressive model of order p, 

abbreviated AR (p), can be written as: 

 

𝐸𝑡 =  𝝋𝟏𝐸𝑡−1 + 𝜑2𝐸𝑡−2 + ⋯ + 𝜑𝑝𝐸𝑡−𝑝 + 𝜀𝑡  ……………………[1] 

 

where 𝐸𝑡 is a stationary series, 𝜑1, 𝜑2---𝜑𝑝 are parameters of AR. Unless otherwise stated, we 

assume that 𝜀𝑡 is a Gaussian white noise series with mean zero and variance 𝜎𝜀
2. The highest 

order p is refer to as the order of the model. 

The model in lag operator is specify as: 

 

(1 − 𝜑1𝐵 +  𝜑2𝐵2 − ⋯ − 𝜑𝑝𝐵2)𝐸𝑡= 𝜀𝑡    ……………………..[2] 

 

where the lag backshift operator B is defined as  𝐵2𝐸𝑡 =  𝐸𝑡−𝑝 , p = 0, 1, 2, ….. 

More precisely we express the model as: 𝜑(𝐵)𝐸𝑡 = 𝜀𝑡 

The autoregressive operator 𝜑(𝐵) is define as 𝜑(𝐵) =  1 − 𝜑1𝐵 + 𝜑2𝐵2 − ⋯ − 𝜑𝑝𝐵𝑝 

 

2. 2. The Moving Average Process 

The moving average process of order q or MA (q) is define as 

 

𝐸𝑡 = 𝜀𝑡 +  ∑ 𝜃𝑗
𝑞
𝑗=1 𝜀𝑡−𝑗          ……………….…………  [3] 

 

where 𝜃1, 𝜃2,…𝜃𝑝 are parameters of MA, 𝜀𝑡 is white noise (error term)  

 

2. 3. Autoregressive Moving Average (ARMA) process 

A natural extension of pure autoregressive and pure moving average processes is the 

mixed autoregressive moving average (ARMA) processes, which includes the autoregressive 

and moving average as special cases (Wei 2006). A process {𝐹𝐷𝐼𝑡} is an ARMA (p,q) process 

if {𝐹𝐷𝐼𝑡}is stationary and if for every t, 

 

𝜑(𝐵)𝐸𝑡 =  𝜃(𝐵)𝜀𝑡    ……………………………….[4] 

 

𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵2. . . −… 𝜑𝑝𝐵𝑝 is the autoregressive coefficient polynomial 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2. . . −… 𝜃𝑝𝐵𝑝 is the moving average coefficient polynomial 

 

2. 4. Autoregressive Integrated Moving Average (ARIMA) Model 

Box, Jenkins and Reinsel (2008) considered the extension of ARMA model to deal with 

homogeneous non-stationary time series in which 𝐸𝑡, itself is non-stationary but its 𝑑𝑡ℎ 

difference is a stationary ARMA model. Denoting the 𝑑𝑡ℎ difference of 𝐹𝐷𝐼𝑡 by 

 

𝜑(𝐵) = 𝜃(𝐵)∇𝑑𝐸𝑡 =  𝜃(𝐵)𝜀𝑡     …………………………[5] 

 

where 𝜑(𝐵) is the non-stationary autoregressive operator such that the roots of 𝜑(𝐵) = 0 are 

and the remainder lie outside the unit circle. 𝜃(𝐵) is stationary moving average operator. 
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2. 5. Box-Jenkins Methodology 

After describing various time series models, the next issue to our concern is how to select 

an appropriate model that can produce accurate forecast based on a description of historical 

pattern in the data and how to determine the optimal model orders. Box and Jenkins (1973) 

developed a practical approach to build ARIMA model, which best fit to a given time series 

and also satisfy the parsimony principle. Their concept has fundamental importance on the area 

of time series analysis and forecasting. 

The BoxJenkins methodology does not assume any particular pattern in the historical data 

of the series to be forecasted. Rather, it uses a three step iterative approach of model 

identification, parameter estimation, and diagnostic checking to determine the best 

parsimonious model from a general class of ARIMA models. This three step process is repeated 

several times until a satisfactory model is finally selected. Then this model can be used for 

forecasting future values of the time series.  

 

2. 6. Model Identification 

Model identification involves examining the given data by various methods, to determine 

the values of p, q and d. The values are determined by using autocorrelation function (ACF) 

and partial autocorrelation function (PACF). This can be done by observing the graph of the 

data or autocorrelation functions [7]. For any ARIMA process, the theoretical (PACF) has non-

zero partial autocorrelation at 1,2…p  lags and partial autocorrelation at all lags. While the 

theoretical (ACF) has non-zero autocorrelation at all lags. The non-zero lags of sample PACF 

and ACF are tentatively accepted as the p and q parameters [14]. For a non- stationary series 

the data is differenced to make stationary. The number of times the series is differenced 

determines the order of d. Therefore for a stationary data d = 0 and ARIMA (p, d, q) can be 

written as ARIMA (p, q). 

 

2. 7. Model Estimation  

After an optimal model has been identified, the model estimation methods make it 

possible to estimate simultaneously all the parameters of the process, the order of integration 

coefficient and parameters of an ARMA structure. There many methods of estimating 

parameters of linear time series models but for the purpose of this study we shall consider the 

maximum likelihood method. Only two methods of maximum likelihood estimation considered 

in time series analysis are discussed. 

Given: 𝝋 = (𝜑1, 𝜑2, … , 𝜑𝑝), 𝜇 = 𝐸(𝑋𝑡), 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑞) and 𝜎𝑒
2 = 𝐸(𝑒𝑡

2) from 

observations of the causal 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process defined by 

 

𝑋𝑡 = 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 + ⋯ + 𝜑𝑝𝑋𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑒𝑡−1 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞         [6] 

                   

(i)  Conditional Maximum Likelihood Estimation 
  

For an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model (3.36), the joint probability density function of 

𝑒 = {𝑒1, 𝑒2, … , 𝑒𝑛}′ is given by  

 

𝑃(𝒂|𝝋, 𝜇, 𝜃, 𝜎𝑒
2) = (2𝜋𝜎𝑒

2)
2

𝑛𝑒𝑥𝑝 {−
1

2𝜎𝑒
2 ∑ 𝑒𝑡

2𝑛
𝑖=1 }              [7] 
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rewriting [6] as  

 

𝑒𝑡 = 𝜃1𝑒𝑡−1 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 + 𝑋𝑡 − 𝜑1𝑋𝑡−1 − 𝜑2𝑋𝑡−2 − ⋯ − 𝜑𝑝𝑋𝑡−𝑝          [8] 

 

Let 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛)′ and assume initial conditions 𝑿∗ = (𝑋1−𝑝, … , 𝑋−2, 𝑋−1, 𝑋0)
′
 

and 𝒆∗ = (𝑒1−𝑝, … , 𝑒−2, 𝑒−1, 𝑒0)
′
 are known. The conditional log-likelihood function is  

 

𝑙𝑛𝐿∗(𝝋, 𝜇, 𝜃, 𝜎𝑒
2) = −

2

𝑛
(2𝜋𝜎𝑒

2) −
𝑆∗(𝝋,𝜇,𝜃)

2𝜎𝑒
2                [9] 

 

where  𝑆∗(𝝋, 𝜇, 𝜃) = ∑ 𝑒𝑡
2𝑛

𝑖=1 (𝝋, 𝜇, 𝜃|𝑿∗, 𝒂∗, 𝑿)                              [10]                        

is the conditional sum of squares function. The quantity of  𝝋̂, 𝜇̂, and𝜃 which maximize (10) 

are called the conditional estimators. Because 𝐿∗(𝝋, 𝜇, 𝜃, 𝜎𝑒
2) involves the data only through 

𝑆∗(𝝋, 𝜇, 𝜃), these estimators are the same as the conditional least squares estimators obtained 

from minimizing the conditional sum of squares function 𝑆∗(𝝋, 𝜇, 𝜃). The estimator 𝜎̂𝑒
2 of 𝜎𝑒

2 

is obtained from 

 

𝜎̂𝑒
2 =

𝑆∗(𝝋,𝜇,𝜃)

𝑛−𝑝−𝑞−1
       [11] 

 

where 𝑛 − 𝑝 − 𝑞 − 1  (degrees of freedom) equals the number of terms used in the sum of 

𝑆∗(𝝋, 𝜇, 𝜃) minus the number of parameters’ estimator.  

 

(ii) Unconditional Maximum Likelihood Estimation 
 

Box, Jenkins and Reinsel (2008) suggest the following unconditional log-likelihood 

function; 

 

𝑙𝑛𝐿∗(𝝋, 𝜇, 𝜃, 𝜎𝑒
2) = −

2

𝑛
(2𝜋𝜎𝑒

2) −
𝑆∗(𝝋,𝜇,𝜃)

2𝜎𝑒
2                         [12]  

 

where  

 

𝑆(𝝋, 𝜇, 𝜃) = [𝐸(𝑒𝑡|𝝋, 𝜇, 𝜃, 𝑿)]2                          [13]  

 

is the conditional sum of squares function. 

where 𝐸(𝑒𝑡|𝝋, 𝜇, 𝜃, 𝑿) is the conditional expectation of 𝑒𝑡 given 𝝋, 𝜇, 𝜃, and𝑿. 

The quantities, 𝝋̂, 𝜇̂, and𝜃 that minimize function (3.26) are called unconditional 

maximum likelihood estimators and are equivalent to the unconditional least squares estimators 

obtained by minimizing (3.27). In practice, the summation in (3.27) is approximated by a finite 

form  

 

𝑆(𝝋, 𝜇, 𝜃) = ∑ [𝐸(𝑒𝑡|𝝋, 𝜇, 𝜃, 𝑿)]2𝑛
𝑖=−𝑀     [14]  

 

where M is sufficiently large integer. 
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The estimator 𝜎̂𝑒
2 of 𝜎𝑒

2 is obtained from 

 

𝜎̂𝑒
2 =

𝑆∗(𝝋, 𝜇, 𝜃)

𝑛
 

 

2. 8. Model Verification 

The last step in Box-Jenkins methodology is model verification or model diagnosis. The 

conformity of white noise residual of the model fit will be judged by plotting the ACF and 

PACF of the residual to see whether it does not have any pattern or we perform Ljung-Box Test 

on the residual.  

The test hypothesis: 

Ho: There is no serial correlation 

H1: There is serial correlation 

The test statistics of the Ljung-Box  

 

𝐿𝐵 = 𝑛(𝑛 + 2) ∑
𝜌𝑘

2

𝑛−𝑘

𝑚
𝑘  Distributed to 𝑥𝑚−𝑒

2              ……..…[15] 

 

where 𝑛 is the sample size, 𝑚 = 𝑙𝑎𝑔 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑝 is the sample autocorrelation  coefficient. 

The decision: if LB is less than critical value of 𝑥2, then we do not reject the null 

hypothesis. This means that a small value of Ljung-Box statistic will be in support of no serial 

correlation or i.e the errors are normally distributed. This is concern about model accuracy. 

 

2. 9. Information Criteria 

In- sample Information Criteria  

Given multiple competing models, we decide upon a final model which is one  popular 

method to use a model selection criteria Alkaike’s Information criteria (AIC), Schwartz 

Information criteria and the Hannan Quinn criteria (HQC) which attempts to choose a model 

that adequately describes the data but in the most parsimonious way as possible or minimizing 

the number of parameters, for example AR (3) model doesn’t outperform AR (2) model by a 

certain predefined quantity or criteria, than AR (2), the most parsimonious model is chosen. In 

general, the model chosen is the one that minimizes the respectively criteria scores 

 

2. 9. 1. Akaike’s Information Criterion 

Akaike’s information criterion (AIC) originally proposed by Akaike, attempts to select a 

good approximating model for inference based on principle of parsimony. AIC proposes the 

use of relative entropy or Kull black-Libeler (K-L) information as fundamental basis for model 

selection. A suitable estimator of the relative K-L information is used and involves two terms. 

The first term is a measure of lack of fit while the second is a penalty for increasing size 

of the model, assuming parsimony in the number of parameters. The AIC criterion to minimized 

is 

 

                      𝐴𝐼𝐶(𝑛) = log(𝜎2) +
2𝑛

𝑇
                          …[16] 
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where n is the dimensionality of the model σ2 is the maximum likelihood estimate of the white 

noise variance, and T is the sample size 

 

2. 9. 2. Schwartz Bayesian Information Criterion 

The Bayesian information criteria (BIC) originally proposed by Swartz was derived in a 

Bayesian context and is dimensional consistent in that it accept to consistently estimate the 

dimension of the true model. It assumes a true model exist in the set of candidate models, 

therefore, requires a large sample size to be effective.  

The BIC criteria to be minimized is 

 

𝐵𝐼𝐶(𝑛) = log(𝜎2) +
𝑛𝑙𝑜𝑔(𝑇)

𝑇
                               … [17] 

 

where n is the dimensionality of the model, σ2 is the maximum likelihood estimate of the white 

noise variance and T is the sample size. 

 

2. 9. 3. Hannan-Quinn Criterion 

The Hanna – Quinn criteria originally proposed by Hanna and Quinn was derived from 

the law of iteration logarithm, it is another dimension consistent model and only differs from 

AIC and BIC with respect to the penalty term.  

The HQ criteria to be minimized is 

 

𝐻𝑄(𝑛) = log(𝜎2) +
2𝑛𝑙𝑜𝑔(𝑇)

𝑇
                                … [18] 

 

where n is the dimensionality of the model, σ2 is the maximum likelihood estimate of the white 

noise variance and T is the sample 

 

2. 10. Augmented Dickey Fuller test 

The test was introduced by Dickey and Fuller (1979) to test for the presence of unit 

root(s). the regression model for the test is given as 

 

∆𝐸𝑡 =  𝜌𝐸𝑡−1 +  𝛽𝑋𝑡−1 + 𝛿1∆𝐸𝑡−1 + 𝛿2𝐸𝑡−2 + ⋯ + 𝛿𝑝𝐸𝑡−𝑝 + 𝑒𝑡          …[19] 

 

The hypothesis testing 

𝐻0: = 𝜌 = 0(the series contain unit root) 

𝐻1: 𝜌 < 0 (the series is stationary) 

 

where 

∆𝐸𝑡 is the difference series 

𝐸𝑡−1 is the immediate previous observation 

𝛿1,…, 𝛿𝑝 is the coefficient of the lagged differenced term up to p 

𝑋𝑡−1 Is the optimal exogenous regresses which may be constant or constant trend 

𝜌 And 𝛽 parameters to be estimated 
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2. 11. Measure of Predictive Accuracy 

The common measures of predictive accuracy that have been used to evaluate the forecast 

performance of a single model in statistics are the root mean square error (MSE), mean square 

error (MSE) mean absolute error (MAE) and mean percentage absolute error (MPAE). The 

measures are computed as follow 

 

MSE  = 
1 

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1               …[21] 

 

RMSE = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1                … [22] 

 

MAE = 
1

𝑛
∑ |𝑒𝑖|

𝑛
𝑖=1                                   … [23] 

 

MAPE = (
1

𝑛
∑ |𝑒𝑖|)  × 100%𝑛

𝑖=1                     … [24] 

 

where 𝑒𝑖 is the forecast error and n is the number of forecast error 

 

 

3.  RESULTS AND DISCUSSION. 

 

In this section we shall use the monthly official exchange rate in Nigeria to identify and 

estimate ARIMA model that adequately represents the series and use some diagnostic tests to 

evaluate the model. The data set is from Nigeria official exchange rate for the Naira to US 

Dollar from January 2002 to December 2018. Gretl and E-views are statistical software’s used 

for data analysis.   

 

3. 1. Graphical Representation of the exchange rata data (𝑬𝒕). 

The upward and downward movements of the exchange rate series in Figures 1 & 2 

indicate that the series are not stationary. 

 

3. 2. Unit root test 

The Augmented Dickey Fuller (ADF) test was used to check the stationary of the 

exchange rate series. The result of the ADF test is shown in the table below. 

 

Table 1. Levels: constant and linear trend 

 

Variable ADF Critical Values Conclusion 

𝐸𝑡 -1.612344 -4.007084                       @1% Not Stationary 

  -3.433651                       @5% Not Stationary 

  -3.140697                       @10% Not Stationary 
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Table 2. Levels: No constant and linear trend 

 

Variable ADF Critical Values Conclusion 

𝐸𝑡 1.160226 -2.577190                     @1% Not Stationary 

  -1.942508                     @5% Not Stationary 

  -1.615589                     @10% Not Stationary 

 

 

We observe from Figures 1 and 2 and Tables 1 and 2 that the series is not stationary at 

levels. However, stationarity was achieve after the first difference as shown in Figure 3 and 

Tables 3 and 4. 

 

Table 3. ADF test After First Difference: with constant and Linear Trend 

 

Variable ADF Critical Values Conclusion 

𝐸𝑡 -20.49616 -4.007084                  @1% Stationary 

  -3.433651                  @5% Stationary 

  -3.140697                  @10% Stationary 

 

 

Table 4. ADF test After First Difference: with constant and Linear Trend 

 

Variable ADF Critical Values Conclusion 

𝐸𝑡 -20.36980 -2.577190                  @1% Stationary 

  -1.942508                  @5% Stationary 

  -1.615589                  @10% Stationary 

 

 

3. 2. ARIMA modeling of Naira to Dollar exchange rate (𝑬𝒕) 

It should be noted that, even if an ARIMA model has been correctly identified and give 

good result, this does not mean that it is the only model that can be considered, various model 

should be identified and tested. With regard to Naira to Dollar exchange rate (𝑬𝒕), three ARIMA 

models, ARIMA (0, 1, 1), ARIMA (2, 1, 0), and ARIMA (1, 1, 2) were identified and fitted 

tentatively as shown in Table 5 
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Table 5. ARIMA Models for Naira to Dollar Exchange rate. 

 

Model Parameter Estimate s.e Z-ratio p-value AIC BIC HNQ 

ARIMA 

(0,1,1) 
𝜽𝟏 0.620838 0.0530209 11.71 <0.0001 1157.559 1164.063 1160.193 

ARIMA 

(2,1,0) 

𝜑1 0.620684 0.0697471 8.899 <0.0001 

1162.856 1173.612 1166.807 

𝜑1 −0.254996 0.0695209 −3.668 0.0002 

ARIMA 

(1,1,2) 

𝜑1 0.0840018 0.784031 0.1071 <0.00001 

1160.533 1173.542 1165.803 𝜃1 0.581727 0.783838 0.7422 <0.0001 

𝜃2 0.0210098 0.491990 0.04270 <0.00001 

 

 

3. 3. Model Diagnostic Checking or Evaluation 

We use diagnostic test of the model residuals to check if the model has adequately fitted 

the series. First we plot the ACF and the PACF of the standardized residuals to visually see if 

there exists serial correlation. Next we performed the Ljung- Box test for the three competing 

models to check if there exists serial correlation in the residual. The ACF and PACF plots of 

the residuals from ARIMA (0, 1, 1), ARIMA (2, 1, 0) and ARIMA (1, 1, 2) shows that all 

correlations are within the threshold limits indicating that the residuals are white noise. This 

can be seen in Figures 5, 6 and 7. A Ljung-Box test for the three competing model returns p-

values greater than the critical value at 5%, this also suggests that the residuals are white noise 

and that the models are adequate. This can be seen in Table 7 

 

Table 6. Ljung – Box Residual autocorrelation test result for the three competing models 

 

Model Test Statistic P-value 

ARIMA (0,1,1) 3.12449 0.9890 

ARIMA (2,1,0) 5.63517 0.8449 

ARIMA (1,1,2) 2.6449 0.9767 

 

 

3. 5. Model forecast Evaluation and selection. 

So far we have three competing models that are adequate and our interest is towards 

selecting a model that best represents the series (𝐸𝑡) in terms of forecasting new future 

observation (out- of – sample forecast). Given the series 𝐸𝑡 which consist of 204 observations, 

we split the series into two portions. The first 192 observations are used for estimating the three 
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models and the remaining 12 observations are used for the out – of – sample forecast. The graph 

of forecasts from ARIMA (0,1,1), ARIMA (2, 1,0) and ARIMA (1,1,2) models as shown in 

Figures 8, 9 and 10 respectively, indicate that the forecasts are close to the actual values that 

are all within 95% interval forecasts.  

Base on in-sample information criteria ARIMA (0, 1, 1) is the best model. However, 

comparing the out-of-sample forecasts of the competing models using Root Mean Square Error 

(RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE) as the measures of accuracy, ARIMA (2, 1, 0) appears to have 

minimum RMSE, MSE, MAE, MAPE therefore, gives the best representation of the out-of- 

sample forecasts of 𝐸𝑡. (Refer to Table 8) 

Hence our estimated ARIMA (2, 1, 0) is specify as follows 

 

𝐸𝑡 = 0.620684𝐸𝑡−1 − 0.254996𝐸𝑡−2 
 

s.e   (0.0697471)      (0.0695209) 

 

Z-ratio (8.899) (−3.668) 

 

P-value (<0.0001) (0.0002) 

 

[Excerpts from Table 6] 

 

Table 7. Measures of Predictive Accuracy. 

 

Model RSME MSE MAE MAPE 

ARIMA(0, 1, 1) 0.5767 0.3325 0.5344 0.1747 

ARIMA(2,1,0) 0.4851 0.2353 0.4995 0.1498 

ARIMA(1, 1,2) 0.5345 0.2858 0.4995 0.1633 

 

 

4.  CONCLUSIONS 

 

It is always argued that a model that is best in the in-sample fitting may not necessarily 

give more genuine forecasts since it is the same set of data that used for model estimation is 

also used for forecast evaluation. By implication, model selection based on in-sample criteria 

such as Akaike information criteria, Schwarz information criteria and Hannan Quinn 

information criteria may not provide more genuine forecasts. Also, a model selected on the 

basis of in-sample criteria does not give information about the future observations. Hence, in 

this study, we dwell completely on the performance of the out- sample forecast to enhance the 

selection of a model. The out-sample forecasting is advantageous over the in-sample forecasting 

in that, the model selection is based on how best the forecasts perform and able to provide 

information about future observations. Furthermore, to measure the accuracy of the out-sample 
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forecasts of the competing models; we apply the RMSE, MSE, MAE and MAPE. The smaller 

the errors, the better the forecasting power of that model.  

In relation to this work we considered data on official Nigeria exchange rate of Naira to 

US Dollar rate from January 2002 to December 2018. Three competing models were identified 

for the exchange rates series. Diagnostic checking revealed that all the competing models 

adequately represent the exchange rates series. However on the basis of out-of-sample model 

selection and evaluation; ARIMA (2, 1, 0) appeared to be the best performing out-of-sample 

forecasting model with minimum RMSE, MSE, MAE and MAPE for the series. The implication 

of this study is that, time series forecasting is not only meant for predicting future observations 

but also in aiding model selection and evaluation on Nigeria exchange rate. 
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Figure 1. Time plot of the monthly exchange rate of Naira to Dollar 

from January 2002 to December 2018 
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Figure 2. ACF and PACF of monthly exchange rate of Naira to Dollar  

from January 2002 to December 2018 

 

 

 

 

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

lag

ACF for USD

+- 1.96/T^0.5

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

lag

PACF for USD

+- 1.96/T^0.5



World Scientific News 127(3) (2019) 225-247 

 

 

-240- 

 
 

Figure 3. Time plot of the first difference of monthly exchange rate of Naira to Dollar 

from January 2002 to December 201. 
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Figure 4. ACF and PACF of the first difference of monthly exchange rate of Naira to Dollar 

from January 2002 to December 2018 
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Figure 5. ACF and PACF of residuals of ARIMA (0, 1, 1) 
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Figure 6. ACF and PACF of residuals of ARIMA (2, 1, 0) 
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Figure 7. ACF and PACF of residuals of ARIMA (1, 1, 2) 
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Figure 8. Plot of ARIMA (0, 1, 1) out-of-sample actual against predicted values  

from 2018:01 to 2018:12. 
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Figure 9. Plot of ARIMA (2, 1, 0) out-of-sample actual against predicted values  

from 2018:01 to 2018:12 
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Figure 10. Plot of ARIMA (1, 1, 2) out-of-sample actual against predicted values  

from 2018:01 to 2018:12 

 

 100

 150

 200

 250

 300

 350

 400

 2010  2011  2012  2013  2014  2015  2016  2017  2018  2019

USD

forecast

95 percent interval


