Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2017 | 78 |

Tytuł artykułu

Genetic diversity of the Salix lapponum L. population intended as a source of material for reintroduction


Treść / Zawartość

Warianty tytułu

Języki publikacji



Salix lapponum is a relict species that occurs in peat bogs. The most numerous population in Poland, which is located on Lake Bikcze, was selected as a source of plant material for genetic analysis to check if it could be used to translocate and establish new populations in the future. For this purpose, the genetic variability of five groups of plants, which were located 50 to 130 m away from one another, was assessed using the AFLP method. GenoType software did not indicate clonal individuals in the studied population. Although the groups were located at short distances from one another, the genetic differentiation between them, expressed as ΦPT and GST coefficients, was very high and the clustering methods adopted showed the presence of genetic structure. The lack of correlation between geographic distance and pair-wise ΦPT indicated that at least in the past the gene flow was fluent, but nowadays seedling recruitment is barely visible. These results can be explained by the fact that from the beginning of the 21st century the Lake Bikcze population has dramatically decreased in size. On the other hand, the expected heterozygosity in each group is quite high. If we want to use this population as a donor of reproductive material, action should be taken as quickly as possible.

Słowa kluczowe







Opis fizyczny




  • Abdelhamid SLê, Conedera M & Küepfer P (2014) The assessment of genetic diversity of Castanea species by RAPD, AFLP, ISSR, and SSR markers. Turkish Journal of Botany 38: 835–850. doi:10.3906/bot-1303-30.
  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y & Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology 17: 5177–5188. doi:10.1111/j.1365-294X.2008.03971.x.
  • Badfar-Chaleshtori S, Shiran B, Kohgard M, Mommeni H, Hafizi A, Khodambashi M & Sorkheh K (2012) Assessment of genetic diversity and structure of Imperial Crown (Fritillaria imperialis L.) populations in the Zagros region of Iran using AFLP, ISSR and RAPD markers and implications for its conservation. Biochemical Systematics and Ecology 42: 35–48. doi:10.1016/j.bse.2011.12.027.
  • Brzosko E, Wróblewska A, Ratkiewicz M, Till-Bottraud I, Nicole F & Baranowska U (2009) Genetic diversity of Cypripedium calceolus at the edge and in the centre of its range in Europe. Annales Botanici Fennici 46: 201–214. doi:10.5735/085.046.0303.
  • Chen Y, Wang L, Ma Y, Xiao H, Tang L & An Q (2010) Genetic diversity of Ligusticum chuanxiong Hort. based on inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) analyses. African Journal of Biotechnology 9: 8290–8295. doi:10.5897/AJB09.853.
  • Douhovnikoff V, McBride JR & Dodd RS (2005) Salix exigua clonal growth and population dynamics in relation to disturbance regime variation. Ecology 86: 446–452. doi:10.1890/04-0257.
  • Earl DA & von Holdt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources 4: 359–361. doi:10.1007/s12686-011-9548-7.
  • Evanno G, Regnaut S & Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x.
  • Excoffier L, Laval LG & Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.
  • Gareca EE, Breyne P, Vandepitte K, Cahill JR, Fernandez M & Honnay O (2013) Genetic diversity of Andean Polylepis (Rosaceae) woodlands and inferences regarding their fragmentation history. Botanical Journal of the Linnean Society 172: 544–554. doi:
  • Godefroid S, Piazza C, Rossi G, Buord S, Stevens AD, Aguraiuja R, Cowell C, Weekley CW, Vogg G, Iriondo JM, Johnson I, Dixon B, Gordon D, Magnanon S, Valentin B, Bjureke K, Koopman R, Virevaire M & Vanderborght (2011) How successful are plant species reintroductions? Biological Conservation 144: 672–682. doi:10.1016/j.biocon.2010.10.003.
  • Guerrant Jr EO & Kaye TN (2007) Reintroduction of rare and endangered plants: common factors, questions and approaches. Australian Journal of Botany 55: 362–370. doi:10.1071/BT06033.
  • Gugerli F, Eichenberger K & Schneller JJ (1999) Promiscuity in populations of the cushion lant Saxifraga oppositifolia in the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Molecular Ecology 8: 453–461. doi:10.1046/j.1365-294X.1999.00586.x.
  • Hammer Ø, Harper DAT & Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4.
  • Hilmo O, Lundemo S, Holien H, Stengrundet K & Stenøien HK (2012) Genetic structure in a fragmented Northern Hemisphere rainforest: large effective sizes and high connectivity among populations of the epiphytic lichen Lobaria pulmonaria. Molecular Ecology 21: 3250–3265. doi:10.1111/j.1365-294X.2012.05605.x.
  • Jakobsson M & Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. doi:
  • Khadivi-Khub A & Soorni A (2014) Comprehensive genetic discrimination of Leonurus cardiaca populations by AFLP, ISSR, RAPD and IRAP molecular markers. Molecular Biology Reports 41: 4007–4016. doi:10.1007/s11033-014-3269-4.
  • Kołos A, Wołkowycki D, Banaszuk P & Kamocki A (2015) Protection of relict plant species at the limit of their geographical range: response of Salix lapponum to competitor removal. Annales Botanici Fennici 52: 303–314. doi:
  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.
  • Kruszelnicki J, Gostyńska-Jakuszewska M & Rutkowski L (2014) Salix lapponum L. (wierzba lapońska): Polska czerwona księga roślin. Paprotniki i rośliny kwiatowe Wyd. III uaktualnione i rozszerzone (ed. by R Kaźmierczakowa, K Zarzycki & Z Mirek) IB PAN & IOP PAN.
  • Meirmans PG & Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4: 792–794. doi:10.1111/j.1471-8286.2004.00770.x.
  • Mirek Z, Zarzycki K, Wojewoda W & Szeląg Z (2006) Czerwona lista roślin i grzybów Polski. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow.
  • Miyashita NT, Kawabe A & Innan H (1999) DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152: 1723–1731.
  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143–1155. doi:10.1111/j.1365-294X.2004.02141.x.
  • Peakall R & Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537–2539. doi://
  • Pogorzelec M (2008) Influence of chosen environmental abiotic factors on Salix lapponum L. populations functioning in Polesie Lubelskie Region. Polish Journal of Environmental Studies 17: 139–144.
  • Pogorzelec M, Banach-Albinska B, Serafin A & Szczurowska A (2014a) Population resources of an endangered species Salix lapponum L. in Polesie Lubelskie Region (eastern Poland). Acta Agrobotanica 67: 81–86. doi:10.5586/aa.2014.043.
  • Pogorzelec M, Bronowicka-Mielniczuk U, Banach B, Szczurowska A & Serafin A (2014b) Relict boreal willows (Salix lapponum and Salix myrtilloides) as an element of phytocoenoses overgrowing the water Bodies in Eastern Poland. Applied Ecology and Environmental Researches 12: 441–456.
  • Pogorzelec M, Glebocka K, Hawrylak-Nowak B & Parzymies M (2014c) Reproduction and diversity of the endangered Salix lapponum L. populations in Eastern Poland. Turkish Journal of Botany 38: 1239–1247. doi:10.3906/bot-1405-113.
  • Porebski S, Bailey LG & Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15: 8–15. doi:10.1007/BF02772108.
  • Pritchard JK, Stephens M & Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
  • Reading RP, Clark TW & Kellert SR (2002) Towards an endangered species reintroduction paradigm. Endangered Species Update 19: 142–146.
  • Ren H, Jian SG, Liu HX, Zhang QM & Lu HF (2014) Advances in the reintroduction of rare and endangered wild plant species. Science China Life Sciences 57: 603–609. doi:10.1007/s11427-014-4658-6.
  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137–138.
  • Serafin A, Pogorzelec M, Banach B, Szczurowska A & Mielniczuk J (2015) Physico-chemical groundwater conditions at Salix lapponum stands in Eastern Poland. Dendrobiology 73: 65–74. doi:10.12657/denbio.073.007.
  • Sochor M, Vašut RJ, Bártová E, Majeský Ľ & Mráček J (2013) Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet and Genomes 9: 1193–1205. doi:10.1007/s11295-013-0628-6.
  • Stamati K, Hollingsworth PM & Russell J (2007) Patterns of clonal diversity in three species of sub-arctic willow (Salix lanata, Salix lapponum and Salix herbacea). Plant Systematics and Evolution 269: 75–88. doi:10.1007/s00606-007-0578-2.
  • Stehlik I, Schneller JJ & Bachmann K (2001) Resistance or emigration: response of the high- alpine plant Eritrichium nanum (L.) Gaudin to the ice age within the Central Alps. Molecular Ecology 10: 357–370.
  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M & Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414. doi:
  • Young A, Boyle T & Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution 11: 413–418.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.