PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 62 | 1 |

Tytuł artykułu

Evolution of postcranial skeleton in worm lizards inferred from its status in the Cretaceous stem-amphisbaenian Slavoia darevskii

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Amphisbaenians are one of the most derived fossorial groups among Squamata. Studies of their evolution were hampered by their specialized limbless morphology and unrecognized early fossil record. This study presents a detailed description of the postcranial anatomy of the oldest known stem-amphisbaenian Slavoia darevskii. The skeleton shows an incipient adaptation to the fossorial mode of life, expressed in the early stages of limb reduction and elongation of the trunk, typical aspects of modern worm lizards. The forelimbs show a hyperphalangy of the first digit. They were probably strengthened this way to support the head in burrowing. Such an anatomy of the most ancient amphisbaenians implies that the forelimbs were lost multiple times in the amphisbaenians to be retained only in the Bipedidae. The hindlimb reduction was initiated early (before the split into modern families) but may have been completed independently. Despite these changes, S. darevskii still had the plesiomorphic 26 presacral vertebrae but the neck region was shorter, as shown by the ribs morphology and position.

Wydawca

-

Rocznik

Tom

62

Numer

1

Opis fizyczny

p.9-23,fig.,ref.

Twórcy

Bibliografia

  • Ananjeva, N.B. 1977. Morphometrical analysis of limb proportions of five sympatric species of desert lizards (Sauria, Eremias) in the southern Balkhash lake region. Proceedings of the Zoological Institute, Academy of Sciences of the USSR 74: 3–13.
  • Bolet, A., Delfino, M., Fortuny, J., Almécija, S., Roblem, J.M., and Alba, D.M. 2014. An amphisbaenian skull from the European Miocene and the evolution of Mediterranean worm lizards. PLoS ONE 9: e98082.
  • Borsuk-Białynicka, M. 2008. Evolution of the iliosacral joint in diapsid phylogeny. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 249: 297–311.
  • Caldwell, M.W. 2003. “Without a leg to stand on”: on the evolution and development of axial elongation and limblessness in tetrapods. Canadian Journal of Earth Sciences 40: 573–588.
  • Cope, E.D. 1894. On the genera and species of Euchirotidæ. American Naturalist 28: 436–437.
  • Estes, R., de Queiroz, K., and Gauthier, J. 1988. Phylogenetic relationships within Squamata. In: R. Estes and G. Pregill (eds.), Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L. Camp, 119–281. Stanford University Press, Stanford.
  • Folie, A., Smith, R., and Smith, T. 2013. New amphisbaenian lizards from the Early Paleogene of Europe and their implications for the early evolution of modern amphisbaenians. Geologica Belgica 16: 227–235.
  • Fujiwara, S.I. 2009. Olecranon orientation as an indicator of elbow joint angle in the stance phase, and estimation of forelimb posture in extinct quadruped animals. Journal of Morphology 270: 1107–1121.
  • Gans, C. 1960. A taxonomic revision of the Trogonophinae, and a functional interpretation of the amphisbaenid adaptive pattern. Bulletin of the American Museum of Natural History 119: 129–204.
  • Gans, C. 1975. Tetrapod limblessness: evolution and functional corollaries. Integrative and Comparative Biology 15: 455–467.
  • Gao, K.-Q. and Norell, M.A. 2000. Taxonomic composition and systematics of Late Cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, Mongolian Gobi Desert. Bulletin of the American Museum of Natural History 249: 1–118.
  • Gauthier, J.A., Kearney, M., Maisano, J.A., Rieppel, O., and Behlke, A.D.B. 2012. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History 53: 3–308.
  • Goldstein, B. 1972. Allometric analysis of relative humerus width and olecranon length in some unspecialized burrowing mammals. Journal of Mammalogy 53: 148–156.
  • Greer, A.E. 1985. The relationships of the lizard genera Anelytropsis and Dibamus. Journal of Herpetology 19: 116–156.
  • Greer, A.E. 1991. Limb reduction in squamates: identification of the lineages and discussion of the trends. Journal of Herpetology 25: 166–173.
  • Greer, A.E. 1992. Hyperphalangy in squamates: insight on the reacquisition of primitive character states in limb-reduced lineages. Journal of herpetology 26: 327–329.
  • Hembree, D.I. 2007. Phylogenetic revision of Rhineuridae (Reptilia: Squamata: Amphisbaenia) from the Eocene to Miocene of North America. The University of Kansas Paleontological Contributions 15: 1–20.
  • Herrel, A., Vanhooydonck, B., and Irschick, D.J. 2008. Anatomical basis of differences in locomotor behavior in Anolis lizards: A comparison between two ecomorphs. Bulletin of the Museum of Comparative Zoology 159: 213–238.
  • Hoffstetter, R., and Gasc, J.-P. 1969. Vertebrae and ribs of modern reptiles. Biology of the Reptilia 1: 201–310.
  • Ivanov, M. 2007. Herpetological assemblages from the Pliocene to middle Pleistocene in Central Europe: palaeoecological significance. Geodiversitas 29: 297–320.
  • Kearney, M. 2002. The appendicular skeleton in amphisbaenians. Copeia 2002: 719–738.
  • Kearney, M. and Stuart, B.L. 2004. Repeated evolution of limblesness and digging heads in worm lizards revealed by DNA from old bones. Proceedings of the Royal B 271: 1677–1683.
  • Kearney, M., Maisano, J.A., and Rowe, T. 2005. Cranial anatomy of the extinct amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high resolution X-ray computed tomography. Journal of Morphology 264: 1–33.
  • Lee, M.S.Y. 1998. Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society 65: 369–453.
  • Lee, M.S.Y., Palci, A., Jones, M.E., Caldwell, M.W., Holmes, J.D., and Reisz, R.R. 2016. Aquatic adaptations in the four limbs of the snakelike reptile Tetrapodophis from the Lower Cretaceous of Brazil. Cretaceous Research 66: 194–199.
  • Maisano, J.A. 2001. A survey of state of ossification in neonatal squamates. Herpetological Monographs 15: 135–157.
  • Miralles, A., Hipsley, C.A., Erens, J., Gehara, M., Rakotoarison, A., Glaw, F., Müller, J., and Vences, M. 2015. Distinct patterns of desynchronized limb regression in Malagasy scincine lizards (Squamata, Scincidae). PLoS ONE 10: e0126074.
  • Müller, J.N. 2001. Osteology and relationships of Eolacerta robusta, a lizard from the Middle Eocene of Germany (Reptilia, Squamata). Journal of Vertebrate Paleontology 21: 261–278.
  • Parker, T.J. 1900. A Course of Instruction in Zootomy (Vertebrata). xviii + 397 pp. Macmillan and Co., London.
  • Pounds, A.J., Jackson, J.K., and Shively, S.H. 1983. Allometric growth of the hind limbs of some terrestrial iguanid lizards. American Midland Naturalist 110: 201–206.
  • Renous, S. 1977. Musculature of the buccal floor of Bipes canaliculatus (Reptilia: Amphisbaenia). Copeia 1977: 464–471.
  • Rieppel, O. 1981. The skull and the jaw adductor musculature in some burrowing scincomorph lizards of the genera Acontias, Typhlosaurus and Feylinia. Journal of Zoology 195: 493–528.
  • Rieppel, O. 1992. Studies on skeleton formation in reptiles: III, patterns of ossification in the skeleton of Lacerta vivipara Jacquin (Reptilia, Squamata). Fieldiana (Zoology) 68: 1–25.
  • Russell, A.P. and Bauer, A.M. 2008. The Appendicular Locomotor Apparatus of Sphenodon and Normal-limbed Squamates. Biology of the Reptilia 21: 1–465.
  • Sakata, S. and Hikida, T. 2003. A fossorial lizard with forelimbs only: Description of a new genus and species of Malagasy skink (Reptilia: Squamata: Scincidae). Current Herpetology 22: 9–15.
  • Shapiro, M.D., Shubin, N.H., and Downs, J.P. 2007. Limb diversity and digit reduction in reptilian evolution. In: B.K. Hall (ed.), Fins into Limbs: Evolution, Development, and Transformation, 225–245. The University of Chicago Press, Chicago.
  • Skawiński, T. and Tałanda, M. 2015. Integrating developmental biology and the fossil record of reptiles. International Journal of Developmental Biology 58: 949–959.
  • Skinner, A., Lee, M.S.Y., and Hutchinson, M.N. 2008. Rapid and repeated limb loss in a clade of scincid lizards. BMC Evolutionary Biology 8: 310.
  • Snyder, R.C. 1954. The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. American Journal of Anatomy 95: 1–45.
  • Stanley, S.M. and Ruddiman, W.F. 1994. Neogene ice age in the North Atlantic region: climatic changes, biotic effects, and forcing factors. In: J.P. Kennet and S.M. Stanley (eds.), Effects of Past Global Change on Life, 118–133. National Academy Press, Washington, DC.
  • Sulimski, A. 1984. A new Cretaceous scincomorph lizard from Mongolia. Palaeontologia Polonica 46: 143–155.
  • Tałanda, M. 2016. Cretaceous roots of amphisbaenian lizards. Zoologica Scripta 45: 1–8.
  • Vidal, N. and Hedges, S.B. 2009. The molecular evolutionary tree of lizards, snakes and amphisbaenians. Comptes Rendus Biologies 332: 129–139.
  • Wake, M.H. 1993. The skull as a locomotor organ. The Skull 3: 197–240.
  • Wiens, J.J., Brandley, M.C., and Reeder, T.W. 2006. Why does a trait evolve multiple times within a clade? Repeated evolution of snakeline body form in squamate reptiles. Evolution 60: 123–141.
  • Zangerl, R. 1945. Contributions to the osteology of the post-cranial skeleton of the Amphisbaenidae. American Midland Naturalist 33: 764–780.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ee33035b-1f5d-44d8-b2e7-3902da6a4f0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.