PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 07 |

Tytuł artykułu

Molecular cloning and functional characterization of a glyceraldehyde-3-phosphate dehydrogenase gene from Spartina alterniflora reveals its involvement in salt stress response

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been emerging to be a multifunctional protein involved in various cellular processes, in addition to its role in energy metabolism. In this study, the SaGAPDH gene was cloned from Spartina alterniflora based on the full-length cDNA library. The open reading frame of SaGAPDH was 1014 bp, and it was encoding 337 amino acids with a calculated molecular mass of 36.40 kDa. Multiple sequence alignment showed that SaGAPDH had high amino acid sequence identity with other plant GAPDHs, and phylogenetic analysis demonstrated that SaGAPDH had a closer affinity to GAPDH in Aeluropus lagopoides (AlGAPDH). Subcellular localization suggested that SaGAPDH was located in cytosol. The recombinant SaGAPDH protein was expressed in Escherichia coli cells to characterize its catalytic activity. And E. coli carrying SaGAPDH gene showed an increased salt stress resistance. SaGAPDH gene was induced by salt stress, and to further investigate its function, transgenic Arabidopsis plants ectopically antisense-overexpressing SaGAPDH was generated. The transgenic Arabidopsis plants showed a specific down-regulation of AtGAPC1 transcript and the GAPDH enzyme activity. They also showed decreased tolerance to salt stress and down-regulation of antioxidant enzymes including catalase, ascorbate peroxidase, superoxide dismutase, and peroxidase, as well as their transcripts. Above results were further confirmed by the aggravation of oxidative damage in SaGAPDH antisense-overexpressing transgenic Arabidopsis lines, which accumulated more reactive oxygen species (ROS) such as superoxide anion (O₂˙⁻) and hydrogen peroxide (H₂O₂) under salt stress. This study indicated that SaGAPDH may play an important role in response to salt stress by the regulation of redox homeostasis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

07

Opis fizyczny

Article 127 [13p.], fig.,ref.

Twórcy

autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
  • Jintanglang School of Architecture and Urban Environment, Soochow University, Suzhou 215123, China
autor
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
autor
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
autor
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
autor
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
  • Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng 224051, China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China

Bibliografia

  • Anoman AD, Muñoz-Bertomeu J, Rosa-Téllez S, Flores-Tornero M, Serrano R, Bueso E, Fernie AR, Segura J, Ros R (2015) Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis. Plant Physiol 169:1619–1637
  • Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011) S-Nitrosylation: an emerging post-translational protein modification in plants. Plant Sci 181:527–533
  • Baisakh N, Subudhi PK, Parami NP (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149
  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genom 8:287–300
  • Chang L, Guo A, Jin X, Yang Q, Wang D, Sun Y, Huang Q, Wang L, Peng C, Wang X (2015) The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress—based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. Plant Sci 236:223–238
  • Cho JI, Lim HM, Siddiqui ZS, Park SH, Kim AR, Kwon TR, Lee SK, Park SC, Jeong MJ, Lee GS (2014) Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants. Biotechnol Lett 36:1641–1648
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • Ferreira de Carvalho J, Poulain J, Da Silva C, Wincker P, Michon-Coudouel S, Dheilly A, Naquin D, Boutte J, Salmon A, Ainouche M (2013) Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity 110:181–193
  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379
  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427
  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212
  • Guo L, Ma F, Wei F, Fanella B, Allen DK, Wang X (2014) Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation. Plant Cell 26:3023–3035
  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:701596
  • Hajirezaei MR, Biemelt S, Peisker M, Lytovchenko A, Fernie AR, Sonnewald U (2006) The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism. J Exp Bot 57:2363–2377
  • Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235
  • Han S, Wang Y, Zheng X, Jia Q, Zhao J, Bai F, Hong Y, Liu Y (2015) Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell 27:1316–1331
  • Henry E, Fung N, Liu J, Drakakaki G, Coaker G (2015) Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genet 11:e1005199
  • Jeong MJ, Park SC, Byun MO (2001) Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Mol Cells 12:185–189
  • Kim SC, Guo L, Wang X (2013) Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis. J Biol Chem 288:11834–11844
  • Krasensky J, Jonak C (2012) Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608
  • Manjunath S, Sachs MM (1997) Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia. Plant Mol Biol 33:97–112
  • Marri L, Sparla F, Pupillo P, Trost P (2005) Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56:73–80
  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558
  • Muñoz-Bertomeu J, Cascales-Miñana B, Irles-Segura A, Mateu I, Nunes-Nesi A, Fernie AR, Segura J, Ros R (2010) The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. Plant Physiol 152:1830–1841
  • Muñoz-Bertomeu J, Bermúdez MA, Segura J, Ros R (2011) Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism. J Exp Bot 62:1229–1239
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349
  • Petersen J, Brinkmann H, Cerff R (2003) Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids. J Mol Evol 57:16–26
  • Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2006) Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Mol Biol 61:945–957
  • Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2008) Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148:1655–1667
  • Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539
  • Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 1810:741–751
  • Subudhi PK, Baisakh N (2011) Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. Vitro Cell Dev Biol Plant 47:441–457
  • Sun B, Wang P, Wang R, Xu S, Li YK (2018) Molecular cloning and characterization of a meta/para-O-methyltransferase from Lycoris aurea. Int J Mol Sci 19:1911
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
  • Velasco R, Salamini F, Bartels D (1994) Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol Biol 26:541–546
  • Vescovi M, Zaffagnini M, Festa M, Trost P, Schiavo FL, Costa A (2013) Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiol 162:333–346
  • Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidiopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16
  • Xu S, Lou T, Zhao N, Gao Y, Dong L, Jiang D, Shen W, Huang L, Wang R (2011) Presoaking with hemin improves salinity tolerance during wheat seed germination. Acta Physiol Plant 33:1173–1183
  • Yang Y, Kwon HB, Peng HP, Shih MC (1993) Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101:209–216
  • Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P (2013) Plant cytoplasmic GAPDH: redox posttranslational modifications and moonlighting properties. Front Plant Sci 4:450
  • Zhang XH, Rao XL, Shi HT, Li RJ, Lu YT (2011) Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell Tissues Organ Cult 107:1–11
  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ee2ab112-b833-460e-a13b-97e590cb14d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.