Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 09 | 1 |
Tytuł artykułu

Quantifying phyllostomid bats at different taxonomic levels as ecological indicators in a disturbed tropical forest

Warianty tytułu
Języki publikacji
With the aim of quantitatively evaluating the usefulness of phyllostomid bats as ecological indicators, we compared intra-family levels and feeding guilds between tropical old-growth forest and patches of secondary vegetation growing where the land had been used for shifting agriculture. There were significant differences between vegetation types in bat species composition, with the frugivore guild most abundant in secondary vegetation and the animalivore guild most abundant in the old-growth forest. These results are congruent with the findings for other Neotropical zones and appear to be associated with the type of soil management that allows secondary vegetation to grow. Using the Indicator Value method, two subfamilies, five genera and five species were found to have a significant indicator value. However, these numbers only represent a small proportion of the five subfamilies, 20 genera and 28 species recorded, indicating that under the disturbance conditions that characterize the study area, phyllostomid bats were poor ecological indicators. Even so, some species and subfamilies are useful as disturbance detectors.
Opis fizyczny
  • Departamento de Ecologia Aplicada, Instituto de Ecología, A.C., A.P. 63, Xalapa 91000, Veracruz, Mexico
  • 1. A. N. Andersen, B. D. Hoffmann, W. J. Müller, and A. D. Griffiths . 2002. Using ants as bioindicators in land management: simplifying assessment of ant community responses. Journal of Applied Ecology 39:8–17. Google Scholar
  • 2. A. N. Andersen, A. Fisher, B. D. Hoffmann, J. L. Read, and R. Richards . 2004. Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral Ecology 29:87–92. Google Scholar
  • 3. H. T. Arita 1993. Rarity in Neotropical bats: correlations with taxonomy, diet, and body mass. Ecological Applications 3:506–517. Google Scholar
  • 4. R. J. Baker, C. A. Porter, J. C. Patton, and R. A. Van den Bussche . 2000. Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occasional Papers, The Museum, Texas Tech University 202:1–16. Google Scholar
  • 5. O. Balmer 2002. Species lists in ecology and conservation: abundances matter. Conservation Biology 16:1160–1161. Google Scholar
  • 6. E. Bernard and M. B. Fenton . 2003. Bat mobility and roosts in a fragmented landscape in Central Amazonia, Brazil. Biotropica 35:262–277. Google Scholar
  • 7. A. P. Brosset, P. Charles-Dominique, A. Cockle, J. F. Cosson, and D. Masson . 1996. Bat communities and deforestation in French Guiana. Canadian Journal of Zoology 74:1974–1982. Google Scholar
  • 8. M. K. Chase, W. B. Kristan III, A. J. Lynam, M. V. Price, and J. T. Rottenberry . 2000. Single species as indicators of species richness and composition in California coastal sage scrub birds and mammals. Conservation Biology 14:474–487. Google Scholar
  • 9. D. V. Clark 1996. Abolishing virginity. Journal of Tropical Ecology 12:735–739. Google Scholar
  • 10. K. R. Clarke 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117–143. Google Scholar
  • 11. K. R. Clarke and R. N. Gorley . 2001. PRIMER v5: User manual/tutorial PRIMER-E, Plymouth. 192. pp. Google Scholar
  • 12. K. R. Clarke and R. M. Warwick . 2001. Change in marine communities: an approach to statistical analysis and interpretation PRIMER-E, Plymouth. 172. pp. Google Scholar
  • 13. P. Cruz-Hernández 1999. Ordenamiento ecológico del Parque Estatal Agua Blanca, Macuspana, Tabasco Undergraduate Thesis. Universidad Juárez Autónoma de Tabasco. 77. pp. Google Scholar
  • 14. M. Dufrěne and P. Legendre . 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345–366. Google Scholar
  • 15. A. Estrada and R. Coates-Estrada . 2002. Bats in continuous forest, forest fragments and in a agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation 103:237–245. Google Scholar
  • 16. A. Estrada, R. Coates-Estrada, and D. Merritt Jr. . 1993. Bat species richness and abundance in tropical rain forest fragments and in agricultural habitats at Los Tuxtlas, Mexico. Ecography 16:310–318. Google Scholar
  • 17. M. J. Evelyn and D. A. Stiles . 2003. Roost requirements of two frugivorous bats (Sturnira lilium and Artibeus intermedius) in fragmented neotropical forest. Biotropica 35:405–418. Google Scholar
  • 18. M. B. Fenton, L. D. Acharya, D. Audet, M. B C. Hickey, C. Merriman, M. K. Obrist, D. M. Syme, and B. Adkins . 1992. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the neotropics. Biotropica 24:440–446. Google Scholar
  • 19. M. B. Fenton, E. Bernard, S. Bouchard, L. Hollis, D. S. Johnston, C. L. Lausen, J. M. Ratcliffe, D. K. Riskin, J. R. Taylor, and J. Zigouris . 2001. The bats of Lamanai, Belize: roosts and trophic roles. Journal of Tropical Ecology 17:511–524. Google Scholar
  • 20. J. Galindo-González and V. J. Sosa . 2003. Frugivorous bats in isolated trees and riparian vegetation associated with human-made pastures in a fragmented tropical landscape. The Southwestern Naturalist 48:579–589. Google Scholar
  • 21. E. García 1987. Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana) Talleres de Offset Larios. México, DF. 217. pp. Google Scholar
  • 22. N. P. Giannini and E. K V. Kalko . 2004. Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos 105:209–220. Google Scholar
  • 23. N. P. Giannini and E. K V. Kalko . 2005. The guild structure of animalivorous leaf-nosed bats of Barro Colorado Island, Panama, revisited. Acta Chiropterologica 7:131–146. Google Scholar
  • 24. P. M. Gorresen and M. R. Willig . 2004. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. Journal of Mammalogy 85:688–697. Google Scholar
  • 25. P. M. Gorresen, M. R. Willig, and R. E. Strauss . 2005. Multivariate analysis of scale-dependent associations between bats and landscape structure. Ecological Applications 15:2126–2136. Google Scholar
  • 26. J. Grand, J. Buonaccorsi, S. A. Cushman, C. R. Griffin, and M. C. Neel . 2004. A multiscale landscape approach to predicting bird and moth rarity hotspots in a threatened pitch pine-scrub oak community. Conservation Biology 18:1063–1077. Google Scholar
  • 27. J. Hilty and A. Merenlender . 2000. Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation 92:185–197. Google Scholar
  • 28. INEGI 1994. Macuspana: Estado de Tabasco INEGI. Aguascalientes, México. Google Scholar
  • 29. K. E. Jones, K. E. Barlow, N. Vaughan, A. Rodríguez-Durán, and M. R. Gannon . 2001. Short-term impacts of extreme environmental disturbance of Puerto Rico. Animal Conservation 4:59–66. Google Scholar
  • 30. K. E. Jones, A. Purvis, and J. L. Gittleman . 2003. Biological correlates of extinction risk in bats. American Naturalist 161:601–614. Google Scholar
  • 31. E. K V. Kalko and C. O. Handley Jr. . 2001. Neotropical bats in the canopy: diversity, community structure, and implications for conservation. Plant Ecology 153:319–333. Google Scholar
  • 32. E. K V. Kalko, C. O. Handley Jr., and D. Handley . 1996. Organization, diversity, and long-term dynamics of a neotropical bat community. Pp 503–553. in Long-term studies of vertebrate communities M. L. Cody and J. A. Smallwood , editors. eds. Academic Press. San Diego, CA. 597. pp. Google Scholar
  • 33. P. B. Landres, J. Verner, and J. W. Thomas . 1988. Ecological uses of vertebrate indicator species: a critique. Conservation Biology 2:316–328. Google Scholar
  • 34. J. H. Lawton, D. E. Bignell, B. Bolton, G. F. Bloemers, P. Eggleton, P. M. Hammond, M. Hodda, R. D. Holt, T. B. Larsen, N. A. Mawsdley, N. E. Stork, D. S. Srivastava, and A. D. Watt . 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76. Google Scholar
  • 35. A. S. Leopold 1950. Vegetation zones of Mexico. Ecology 31:507–518. Google Scholar
  • 36. B. K. Lim and M. D. Engstrom . 2001. Bat community structure at Iwokrama forest, Guyana. Journal of Tropical Ecology 17:647–665. Google Scholar
  • 37. D. B. Lindenmayer, J. F. Franklin, and J. Fischer . 2006. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biological Conservation 131:433–445. Google Scholar
  • 38. B. Mccune and M. J. Mefford . 1999. PC-ORD. Multivariate analysis of ecological data, ver. 4.0 MjM Software Design, Gleneden Beach. Oregon. 237. pp. Google Scholar
  • 39. M. A. Mcgeoch and S. L. Chown . 1998. Scaling up the value of bioindicators. Trends in Ecology and Evolution 13:47–48. Google Scholar
  • 40. M. A. Mcgeoch, B. J. Van Rensburgh, and A. Botes . 2002. The verification and application of indicators: a case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology 39:661–672. Google Scholar
  • 41. R. A. Medellín, H. T. Arita, and O. Sánchez . 1997. Identificación de los murciélagos de México, clave de campo Asociación Mexicana de Mastozoología, A. C. México, D.F. 84. pp. Google Scholar
  • 42. R. A. Medellín, M. Equihua, and M. A. Amín . 2000. Bat diversity and abundance as indicators of disturbance in neotropical rainforests. Conservation Biology 14:1666–1675. Google Scholar
  • 43. D. W. Morrison 1980. Foraging and dayroosting dynamics of canopy fruit bats. Journal of Mammalogy 61:20–29. Google Scholar
  • 44. U. M. Norberg and J. M V. Rayner . 1987. Ecological morphology and flying in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London 316B:335–427. Google Scholar
  • 45. R. F. Noss 1990. Indicators for monitoring biodiversity. Conservation Biology 4:355–364. Google Scholar
  • 46. E. O. Pineda, C. E. Moreno, F. Escobar, and G. Halffter . 2005. Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conservation Biology 19:400–410. Google Scholar
  • 47. J. Ramírez-Pulido, J. Arroyo-Cabrales, and A. Castro-Campillo . 2005. Estado actual y relación nomenclatural de los mamíferos terrestres de México. Acta Zoológica Mexicana (N.S.) 21:21–82. Google Scholar
  • 48. J-M. Roberge and P. Angelstam . 2004. Usefulness of the umbrella species concept as a conservation tool. Conservation Biology 18:76–85. Google Scholar
  • 49. J. Rolstad, I. Gjerde, V. S. Gundersen, and M. Sætersdal . 2002. Use of indicator species to assess forest continuity: a critique. Conservation Biology 16:253–257. Google Scholar
  • 50. K. V. Root, H. R. Akcakaya, and L. Ginzburg . 2003. A multispecies approach to ecological evaluation and conservation. Conservation Biology 17:196–206. Google Scholar
  • 51. M. Schulze, E. Seavy, and D. Whitacre . 2000. A comparison of the phyllostomid bat assemblages in undisturbed neotropical forest and in forest fragments of a slash and burn farming mosaic in Petén, Guatemala. Biotropica 32:174–184. Google Scholar
  • 52. N. B. Simmons and R. S. Voss . 1998. The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna. Part 1: Bats. Bulletin of the American Museum of Natural History 237:1–219. Google Scholar
  • 53. N. B. Simmons, R. S. Voss, and H. C. Peckham . 2000. The bat fauna of the Saül region, French Guiana. Acta Chiropterologica 2:23–36. Google Scholar
  • 54. P. J. Soriano 2000. Functional structure of bat communities in tropical rainforests and Andean cloud forest. Ecotropicos 13:1–20. Google Scholar
  • 55. P. J. Soriano and J. Ochoa . 2001. The consequences of timber exploitation for bat communities in tropical America. Pp 153–66. in The cutting edge: conserving wildlife in logged tropical forests R. A. Fimbel, A. Grajal, and J. G. Robinson , editors. eds. Columbia University Press. New York. 700. pp. Google Scholar
  • 56. S. Temple and J. Wiens . 1989. Bird populations and environmental change: can birds be bioindicators?. American Birds 43:260–270. Google Scholar
  • 57. B. J. Van Rensburg, M. A. Mcgeoch, S. L. Chown, and A. S. Van Jaarsveld . 1999. Conservation of heterogeneity among dung beetles in the Maputaland centre of endemism, South Africa. Biological Conservation 88:145–153. Google Scholar
  • 58. A. D. Watt 1998. Measuring disturbance in tropical forests: a critique of the use of species-abundance models and indicator measures in general. Journal of Applied Ecology 35:465–469. Google Scholar
  • 59. M. Weinbeer and E. K V. Kalko . 2004. Morphological characteristics predict alternative foraging strategy and microhabitat selection in the orange-bellied bat, Lampronycteris brachyotis. Journal of Mammalogy 85:1116–1123. Google Scholar
  • 60. A. L. Wetterer, M. V. Rockman, and N. B. Simmons . 2000. Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bulletin of the American Museum of Natural History 248:1–200. Google Scholar
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.