Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Carbon stocks of coastal wetland ecosystems on Hainan Island, China


Warianty tytułu

Języki publikacji



Coastal wetland ecosystems have a great capacity to store carbon (C), and the condition has a significant influence on carbon emissions and segregation. This study aims to estimate carbon stocks in both vegetation and soil of coastal wetland ecosystems, and to compare the C stocks of different ecosystems and soil layers. This study classified coastal wetland ecosystems into six types, and C stocks were quantified through the measurement of vegetation biomass and soil C. The C stocks of estuaries, muddy beaches, coastal saltwater lakes, mangroves, deltas, and seagrass beds were 210.73, 243.00, 167.41, 426.57, 185.88, and 297.85 MgC ha⁻¹, respectively. Mangroves were found to be the most carbon-rich ecosystem. The total organic C content (TOC) of soil decreased with soil depth and was the highest in the top 0-20 cm layer. The total C storage of coastal wetland ecosystems in Hainan Island was 56.51×10⁵ Mg of C. These estimates show that there is an urgent requirement to protect coastal wetland ecosystems.

Słowa kluczowe








Opis fizyczny



  • Research Institute of Tropical Forestry, Chinese Academy of Forestry, China
  • Research Institute of Tropical Forestry, Chinese Academy of Forestry, China
  • Research Institute of Tropical Forestry, Chinese Academy of Forestry, China
  • Research Institute of Tropical Forestry, Chinese Academy of Forestry, China


  • 1. Valipour M., Sefidkouhi M A G., Raeini M. Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management. 180, 50, 2017.
  • 2. Valipour M. Use of surface water supply index to assessing of water resources management in Colorado and Oregon, US. Advances in Agriculture, Sciences and Engineering Research. 3, 2, 631, 2013.
  • 3. Valipour M., Mousavi S M., Valipour R., Rezaei E. A new approach for environmental crises and its solutions by computer modeling. The first international conference on environmental crises and its Solutions, Kish Island, Iran. 2013.
  • 4. Nellemann C., Corcoran E., Duarte C M., Valdes L., DeYoung C. Blue Carbon: a rapid response assessment. United Nations Environment Programme. GRID-Arendal website. 2009.
  • 5. Mcleod E., Chmura G.L., Bouillon S., Salm R., Björk M., Duarte C.M., Silliman B.R. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO₂. Frontiers in Ecology & the Environment. 9, 10, 552, 2011.
  • 6. Alexander S., Nelson C.R., Aronson J., Lamb D., Cliquet A., Erwin K.L., Hobbs R.J. Opportunities and challenges for ecological restoration within REDD+. Restoration Ecology. 19, 6, 683, 2011.
  • 7. Wang D., Wu R., Li Y. Characteristic coastal ecosystems of tropics in Hainan Island. Journal of tropical oceanography. 30, 26, 2011.
  • 8. Zhang X., Li P., Li P., Xu X. Present conditions and prospects of study on coastal wetlands in China. Advances in Marine Science. 23, 87, 2005.
  • 9. Corbera E., Schroederc H. Governing and implementing REDD+. Environmental Science & Policy. 14, 89, 2011.
  • 10. Olander L.P., Gibbs H.K., Steininger M., Swenson J.J., Murray B.C. Reference scenarios for deforestation and forest degradation in support of REDD: a review of data and methods. Environment Research Letters. 3, 2, 025011, 2008.
  • 11. Bernal B., Mitsch W J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecological Engineering. 34, 4, 311, 2008.
  • 12. Brenner J., Jiméne z J.A., Sardá R., Garola A. An assessment of the non-market value of the ecosystem services provided by the Catalan coastal zone, Spain. Ocean&Coastal Management. 53, 27, 2010.
  • 13. Beaumont N.J., Jones L., Garbutt A., Hansom J.D., Toberman M. The value of carbon sequestration and storage in coastal habitats. Estuarine, Coastal and Shelf Science. 137, 32, 2014.
  • 14. Donato D.K.J.B., Kauffman J.B., Murdiyarso D., Kurnianto S., Stidham M., Kanninen M. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience. 4, 5, 293, 2011.
  • 15. Kauffman J.B., Heider C., Cole T.G., Dwire K.A., Donato D.C. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands. 31, 2, 343, 2011.
  • 16. Pendleton L., Donato D.C., Murray B.C., Crooks S., Jenkins W A., Sifleet S., Megonigal P. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS one. 7, 9, e43542, 2012.
  • 17. Adame M F., Kauffman J.B., Medina I., Gamboa J.N., Torres O., Caamal J.P., Herrera -Silveira J.A. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS One. 8, 2, e56569,2013.
  • 18. Tu Z., Chen X. Current status of coastal wetland resources in Hainan Island and strategies for protection. Wetland Science and Management. 10, 49, 2014.
  • 19. Tue N T., Dung L.V., Nhuan M.T., Omori K. Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. Catena. 121, 119, 2014.
  • 20. Zhang Q., Sui S. The mangrove wetland resources and their conservation in China. Journal of natural resources. 16, 1, 28, 2000.
  • 21. Wang D.R., Wu Z.J., Chen C.H., Lan J .X., Wu R., Chen X .H., Li Y.C. Distribution of sea-grass resources and existing threat in Hainan Island. Marine environment science. 1, 8, 2012.
  • 22. Kauffman J.B., Donato D. Protocols for the measurement, monitoring andreporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forest Research, CIFOR Working Paper. 86. 2012.
  • 23. Komiyama A., Poungparn S., Kato S. Common allometric equations for estimatingthe tree weight of mangroves. Journal of Tropical Ecology. 21, 471, 2005.
  • 24. Ong J.E., Gong W.K., Wong C.H. Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecology and Management. 188, 395, 2004.
  • 25. Hoque A.T.M.R., Sharma S., Hagihara A. Above and belowground carbon acquisition of mangrove kandelia obovata trees in Manko wetland, Okinawa, Japan. International Journal of Environment. 1, 7, 2011.
  • 26. Tam N.F.Y., Wong Y.S., Lan C.Y., Chen G.Z. Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia. 295, 193, 1995
  • 27. Clough B.F., Scott K. Allometric relationships for estimating above-ground biomass in six mangrove species. Forest Ecology and Management. 27, 117, 1989.
  • 28. Fromard F., Puig H., Mougin E., Marty G., Betoulle J.L., Cadamuro L. Structure, aboveground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia. 115, 1, 1998.
  • 29. Comley B.W.T., McGuinness K.A. Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. 53, 431, 2005.
  • 30. Belshe E.F., Mateo M.A., Gillis L.G., Zimmer M., Teichberg M. Muddy waters: unintentional consequences of blue carbon research obscure our understanding of organic carbon dynamics in seagrass ecosystems. Frontiers in Marine Science. 4, 125, 2017.
  • 31. Ray R., Ganguly D., Chowdhury C., Dey M., Das S., Dutta M.K., Jana T.K. Carbon sequestration and annual increaseof carbon stock in a mangrove forest. Atmospheric Environment. 45, 28, 5016, 2011.
  • 32. Yang K., Guan D.S. Changes in forest biomass carbon stock in the Pearl River Delta between 1989 and 2003. Journal of Environmental Sciences. 20, 1439, 2005.
  • 33. Thorhaug A., Poulos H.M., Lópe z-Portillo J., Ku T.C., Berlyn G.P. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Science of The Total Environment. 605, 626, 2017.
  • 34. Elbasiouny H., Abowaly M., Abu-Alkheir A., Gad A. Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena. 113, 70, 2014.
  • 35. Atwood T.B., Connolly R.M., Almahasheer H., Carnell P.E., Duarte C.M., Lewis C.J.E., Serrano O. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change. 7 (7) 523, 2017.
  • 36. Lavery P.S., Mateo M.Á., Serrano O., Rozaimi M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE. 8, 9, e73748, 2013.
  • 37. Liu S., Jiang Z., Zhang J., Wu Y., Lian Z., Huang X. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Marine pollution bulletin. 110 (1), 274, 2016.
  • 38. Bianchi T.S., Galler J.J., Allison M.A. Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuarine, Coastal and Shelf Science. 73, 211, 2007.
  • 39. Etcheber H., Taille z A., Abril G., Garnier J., Servais P., Moatar F., Commarieu M.V. Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia. 588, 1, 245, 2007.
  • 40. Kuwae T., Kanda J., Kubo A., Nakajima F., Ogawa H., Sohma A., Suzumura M. Blue carbon in human-dominated estuarine and shallow coastal systems. Ambio. 45, 3, 290, 2016.
  • 41. Bhomia R.K., Kauffman J.B., McFadden T.N. Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands ecology and management. 24, 2, 187, 2016.
  • 42. Ouyang X., Lee S.Y., Connolly R.M. The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth-Science Reviews. 2017.
  • 43. Fourqurean J.W., Duarte C.M., Kennedy H., Marba N., Holmer M., Mateo M.A., Serrano O. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience. 5, 7, 505, 2012.
  • 44. Huang X., Huang L., Li Y., Xu Z., Fong C.W., Huang D., Liu S. Main seagrass beds and threats to their habitats in the coastal sea of South China. Chinese Science Bulletin. 51, 136, 2006.
  • 45. Dan T.H., Brix H. Effects of soil type and water saturation on growth, nutrient and mineral content of the perennial forage shrub Sesbania sesban. Agroforestry Systems, 91 (1), 173, 2017.
  • 46. Wang G., Guan D., Peart M R., Chen Y., Peng Y. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. Forest Ecology and Management. 310, 539, 2013.
  • 47. Mack M.C., Schuur E.A., Bret -Harte M.S., Shaver G.R., Chapin F.S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature. 431, 7007, 440, 2004.
  • 48. Pugh T.A.M., Arneth A., Olin S., Ahlström A., Bayer A.D., Goldewijk K.K., Schurgers G. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environmental Research Letters. 10, 12, 124008, 2015.
  • 49. Thurner M., Beer C., Santoro M., Carvalhais N., Wutzler T., Schepaschenko D., Schmullius C. Carbon stock and density of northern boreal and temperate forests. Global Ecology and Biogeography, 23 (3), 297, 2014.
  • 50. Lovelock C.E., Atwood T., Baldock J., Duarte C.M., Hickey S., Lavery P.S., Steven A. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment. 2017.
  • 51. Liu Z., Guan D., Wei W., Davis S J., Ciais P., Bai J., Andres R.J. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature. 524, 7565, 335, 2015.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.