PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 1 |

Tytuł artykułu

Optimization of process parameters for pharmaceutical wastewater treatment

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pharmaceutical wastewaters are generated through complex manufacturing processes that contain a variety of organic and inorganic constituents, and are usually characterized by a high concentration of chemical oxygen demand (COD), suspended solids, dissolved solids (salts), toxicity, and refractory compounds. In this paper, wet peroxide oxidation (WPO) was adopted to treat pharmaceutical wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 30 experimental runs needed for optimizing operating conditions. The experimental results show that WPO could effectively reduce COD by 97.5% at optimum conditions: temperature is 260ºC, H₂O₂ excess (HE) is 0, the initial concentration of pharmaceutical wastewater is 45,000 mg/L, and reaction time is 10 min. WPO process is possibly suitable for a primary treatment for pharmaceutical wastewater. Response surface methodology (RSM) could be effectively adopted to optimize the operating multifactors in a complex WPO process.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

1

Opis fizyczny

p.391-395,fig.,ref.

Twórcy

autor
  • Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing 210098, China
autor
  • Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing 210098, China

Bibliografia

  • 1. DEEGAN A.M., SHAIK B., NOLAN N., URELL K., OELGEMÖLLER M., TOBIN J., MORRISEY A. Treatment options for wastewater effluents from pharmaceutical companies. Environ. Sci. Technol., 8, 649, 2011.
  • 2. CHATZITAKIS A., BERBERIDOU C., PASPALTSIS I., KYRIAKOU G., SKLAVIADIS T., POULIOS I. Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Res., 42, 386, 2008.
  • 3. FATTA-KASSINOS D., MERIC S., NIKOLAOU A. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal. Bioanal. Chem., 399, 251, 2011.
  • 4. SCHRÖDER H.F. Substance-specific detection and pursuit of non-eliminable compounds during biological treatment of waste water from the pharmaceutical industry. Waste Manage., 19, 111, 1999.
  • 5. VERLICCHI P., AUKIDY M.A., ZAMBELLO E. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment – a review. Sci. Total Environ., 429, 123, 2012.
  • 6. ZIYLAN A., INCE N.H. The occurrence and fate of antiinflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J. Hazard. Mater., 187, 24, 2011.
  • 7. ENICK O., MOORE M. Assessing the assessments: Pharmaceuticals in the environment. Environ. Impact. Assess., 27, 707, 2007.
  • 8. KLAVARIOTI M., MANTZAVINOS D., KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int., 35, 402, 2009.
  • 9. GLAZE W.H., KANG J.W., CHAPIN D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone-Sci. Eng., 9, 335, 1987.
  • 10. GARCÍA-MOLINA V., LÓPEZ-ARIAS M., FLORCZYK M., CHAMARRO E., ESPLUGAS S. Wet peroxide oxidation of chlorophenols. Water Res., 39, 795, 2005.
  • 11. LOPES R.J.G., PERDIGOTO M.L.N., QUINTA-FERREIRA R.M. Tailored investigation and characterization of heterogeneous {Mn,Cu}/TiO₂ catalysts embedded within a ceria-based framework for the wet peroxide oxidation of hazardous pollutants. Appl. Catal., B, 117-118, 292, 2012.
  • 12. DOMÍNGUEZ C.M., OCÓN P., QUINTANILLA A., CASAS J.A., RODRIGUEZ J.J. Highly efficient application of activated carbon as catalyst for wet peroxide oxidation. Appl. Catal., B, 140-141, 663, 2013.
  • 13. GALEANO L.A., VICENTE M.Á., GIL A. Treatment of municipal leachate of landfill by Fenton-like heterogeneous catalytic wet peroxide oxidation using an Al/Fe-pillared montmorillonite as active catalyst. Chem. Eng. J., 178, 146, 2011.
  • 14. MUHAMAD M.H., ABDULLAH S.R.S., MOHAMAD A.B., RAHMAN R.A., KADHUM A.A.H. Application of response surface methodology (RSM) for optimisation of COD, NH₃-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J. Environ. Manage., 121, 179, 2013.
  • 15. LI J., PENG J.H., GUO S.H., ZHANG L.B. Preparation and characterization of electrodeposited ZnO and ZnO:Co nanorod films for heterojunction diode applications. J. Alloys Compd., 574, 504, 2013.
  • 16. HAZIME R., NGUYEN Q.H., FERRONATO C., HUYNH T.K.X., JABER F., CHOVELON J.M. Optimization of imazalil removal in the system UV/TiO₂/K₂S₂O₈ using a response surface methodology (RSM). Appl. Catal., B, 132-133, 519, 2013.
  • 17. NOSHADI I., AMIN N.A.S., PARNAS R.S. Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: Optimization using response surface methodology (RSM). Fuel, 94, 156, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ede4d4a9-5cd2-46a9-a509-b88b4672e155
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.