PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 6 |

Tytuł artykułu

Response of cultured tomato cells subjected to excess zinc.: role of cell wall in zinc compartmentation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aimof this preliminary study was to evaluate the role of the cell wall in Zn accumulation and tolerance by tomato suspension-cultured cells. Growth parameters, Zn distribution and accumulation by tomato cells were determined in function of zinc concentration.Aparticular attention was paid to the variations of the total cell wall material (cell wall carbohydrates, proteins, and exopolymers) in relation to extracellular levels of Zn. Cells treated with 0.5–5 mM Zn showed typical symptoms of heavy metal toxicity as testified by various growth parameters. Fresh and dry weights as well as total cell volume per vial decreased with increasing Zn concentration in the culture medium. Concurrently, the cell wall biomass increased, as well as the Zn amount retained by cell wall polymers. Cell wall appeared to assume important roles in Zn fixation and could therefore limit Zn influx into the cell. Our results also suggested that zinc fixation by cell wall was not only due to an increase in cellwall biomass but also to an improvement of its binding capacity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

6

Opis fizyczny

p.1197-1204,fig.,ref.

Twórcy

autor
  • Equipe de Glycobiologie et Physiologie Vegetale, Laboratorie de la Barriere Hemato-Encephalique, Faculte des Sciences Jean Perrin, Universitte d'Artois, SP 18 rue Souvraz, 62307 Lens cedex, France
autor
  • Laboratorie de Chimie des Substances Naturelles, Faculte des Sciences et Techniques, 123, avenue Albert Thomas, 87060 Limoges cedex, France
autor
  • Equipe de Glycobiologie et Physiologie Vegetale, Faculte des Sciences Jean Perrin, Universite d'Artois, SP 18 rue Souvarz, 62307 Lens cedex, France

Bibliografia

  • Ali G, Srivastava PS, Iqbal M (1999) Morphogenic and biochemical responses of Bacopa monniera cultures to zinc toxicity. Plant Sci 143:187–193. doi:10.1016/S0168-9452(99)00032-1
  • Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pineaster seedlings. Physiol Plant 92:675–680. doi:10.1111/j.1399-3054. 1994.tb03039.x
  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acid. Anal Biochem 54:484–489. doi:10.1016/0003-2697(73)90377-1
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and woundinduced oxidative cross-linking of a proline-rich plant cell wall protein: a novel rapid defence response. Cell 70:21–30. doi: 10.1016/0092-8674(92)90530-P
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. doi:10.1111/j.1469-8137.2007.01996.x
  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ 17:153–162. doi: 10.1111/j.1365-3040.1994.tb00278.x
  • Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after longterm growth on cadmium-contaminated soil. Planta 216:939–950
  • Cumming JR, Taylor GJ (1991) Mechanism of metal tolerance in plants: physiological adaptations for exclusion of metal ions from the cytoplasm. In: Alscher RG, Cummings JR (eds) Stress responses in plants, adaptation and acclimation mechanisms. Wiley Liss, New York, pp 329–356
  • Deef HES (2008) Effect of cadmium and zinc on growth parameters of tomato seedlings. Acad J Plant Sci 1:5–11
  • Dubois M, Gilles KA, Hamilton JA, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017
  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248
  • Ettler V, Mialjevic M, Touray JC, Piantone P (2002) Leaching of polished sections: an integrated approach for studying the liberation of heavy metals from lead–zinc metallurgical slags. Bull Soc Geol Fr 173:161–169. doi:10.2113/173.2.161
  • Felix G, Grosskopf DG, Regenass M, Basse CW, Boller T (1991) Elicitor-induced ethylene biosynthesis in tomato cells: characterization and use as a bioassay for elicitor action. Plant Physiol 97:19–25. doi:10.1104/pp.97.1.19
  • Franco CR, Chagas AP, Jorge RA (2002) Ion-exchange equilibria with aluminium pectinates. Colloids Surf A Physicochem Eng Asp 204:183–192. doi:10.1016/S0927-7757(01)01134-7
  • Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionnaly different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687. doi: 10.1046/j.1365-3040.2000.00590.x
  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227. doi:10.1016/j.chemosphere.2005.08.018
  • Hagemeyer J (2004) Ecophysiology of plant growth under heavy metal stress. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Heidelberg, pp 201–222
  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11
  • Huang B, Hatch E, Goldsbrough PB (1987) Selection and characterization of cadmium-tolerant cells in tomato. Plant Sci 52:211–221. doi:10.1016/0168-9452(87)90054-9
  • Inouhe M, Mitsumune M, Tohoyama H, Joho M, Murayama T (1991) Contributions of cell wall and metal-binding peptides in suspension-cultured cells of tomato. Bot Mag Tokyo 104:217–229. doi:10.1007/BF02489454
  • Jackson PP, Robinson NJ, Whitton BA (1991) Low molecular weight metal complexes in the fresh water moss Rhyncostegium riparoides exposed to elevated concentrations of Zn, Cu, Cd and Pb in the laboratory and field. Environ Exp Bot 31:359–366. doi:10.1016/0098-8472(91)90061-R
  • Klein MA, Sekimoto H, Milner MJ, Kochian LV (2008) Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Plant Physiol 147:2006–2016. doi:10.1104/pp.108. 119719
  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758. doi:10.1093/pcp/pci015
  • Küpper H, Lombi E, Zhao F-J, Mc Grath SP (2000) Cellular compartmentation of cadmium and zinc in relation of other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84. doi:10.1007/s004250000366
  • Lasat MM, Baker AJM, Kochian L (1996) Physiological characterization of root Zn²⁺ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thalspi. Plant Physiol 112:1715–1722
  • Lesniewska E, Adrian M, Klinguer A, Pugin A (2004) Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy. Ultramicroscopy 100:171–178. doi:10.1016/j.ultramic.2003.11.004
  • Li TQ, Yang XE, Yang JY, He ZL (2006) Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere 16:616–623. doi:10.1016/S1002-0160(06)60095-7
  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, New York
  • Meychik N, Yermakov IP (2001) Ion exchange properties of plant root cell walls. Plant Soil 234:181–193. doi:10.1023/A:1017936318435
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x
  • Nishizono H, Ichikawa H, Suziki S, Ishii F (1987) The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101:15–20. doi:10.1007/BF02371025
  • Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Bot 60:219–226. doi:10.1016/j.envexpbot.2006.10.009
  • Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition and nitrate reduction. Plant Physiol Biochem 35:347–354
  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540. doi:10.1016/j.tplants.2004.09.002
  • Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thévenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553–564. doi:10.1094/MPMI.2003. 16.6.553
  • Prasad MNV (2004) Metallothioneins, metal binding complexes and metal sequestration in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 47–83
  • Psaras GK, Manetas Y (2001) Nickel localization in seeds of the metal hyperaccumulator Thlaspi pindicum Hausskn. Ann Bot Lond 88:513–516. doi:10.1006/anbo.2001.1470
  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23:3–11. doi:10.1051/agro: 2002073
  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–1035. doi:10.1104/pp. 85.4.1031
  • Sousa AI, Caçador I, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extracellular metal binding sites. Chemosphere 70:850–857. doi: 10.1016/j.chemosphere.2007.07.012
  • Steinnes E, Friedland AJ (2006) Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environ Rev 14:169–186. doi:10.1139/A06-002
  • Straczek A, Sarret G, Manceau A, Hinsinger P, Geoffroy N, Jaillard B (2008) Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environ Exp Bot 63:80–90. doi:10.1016/j.envexpbot.2007.10.034
  • Turner RG, Marshall C (1972) The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth. in relation to zinc tolerance. New Phytol 71:671–675. doi:10.1111/j.1469-8137.1972.tb01277.x
  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353. doi:10.1016/j.jtemb.2005.02.007

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-edaa9db0-1aaa-4f73-9184-b61a18c74ce7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.