Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Investigating surface water pollution by integrated remotely sensed and field spectral measurement data: a case study

Warianty tytułu
Języki publikacji
Water quality assessment using remote sensing and its terrestrial components is carried out in short time for larger areas. Another issue that is as important regarding water availability is access to quality water. It is important to investigate the availability of the analysis of remotely sensed data instead of environmental and chemical analysis that determines water quality and usability. To examine the detection of water qualities without taking water samples in situ, spectral library data was used in the Hafik Region. In this context we used spectral measurement data of water samples previously taken from İmranlı, where the Kızılırmak River originates, and used for spectral classification of water quality. Matched filtering was used for integrating spectral data and CHRIS Proba image as the spectral classification method. To conduct an accuracy analysis, chemical oxygen demand measurement was carried out at 10 points determined as 1st and 2nd water quality in the study area on the river and lakes according to the Ministry of the Environment and Urbanization. The overall accuracy of the classification was calculated as 70%. The results of this study have shown the importance of spectral classification of satellite imagery in evaluating water quality and monitoring water resources.
Słowa kluczowe
Opis fizyczny
  • Department of Geomatics Engineering, Cumhuriyet University, Sivas, Turkey
  • Department of Geomatics Engineering, Cumhuriyet University, Sivas, Turkey
  • 1. REVOR D., CASTON M., ZWELABO S. An assessmentof the effect of industrial and sewage effluent on aquatic invertebrates: a case study of a southern urban stream, Zimbabwe. Journal of Sustainable Development, 3 (2), 210, 2010.
  • 2. HE W., CHEN S., LIU X., CHEN J. Water quality monitoring in a slightly polluted inland water body through remote sensing: case study of the Guanting Reservoir in Beijing, China. Front Environ. Sci. Eng. China 2 (2), 163, 2008.
  • 3. HU C., LEE Z., MA R., YU KL., SHANG S. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research, 115, 1, 2010.
  • 4. KAYA Ş., KUTUKCU A. Investigation of morphometric and hydrological characteristics of a water basin using numerical models. Fresenius Environmental Bulletin, 26 (1), 360, 2017.
  • 5. YILMAZ C. Geographic analysis of erosion in Kizilirmak delta. Turkey Quaternary Symposium. ITU Eurasia Institute of Earth Sciences: Istanbul, Turkey, 5, 96, 2005.
  • 6. SERTEL E., FINDIK N., KAYA Ş., ŞEKER D.Z., SAMSUNLU A. Assessment of landscape changes in the Kizilirmak Delta, Turkey, Using Remotely Sensed Data and GIS. Environmental Engineering Science, 25 (3), 353, 2008.
  • 7. GİARDİNO C., CANDIANI G., BRESCIANI M., LEE Z., GAGLIANO S., PEPE M. BOMBER: A tool for estimating water quality and bottom properties from remote sensing images. Computers and Geosciences, 45, 313, 2012.
  • 8. WU Z., ZHANG J., ZHU J., RE J., CHEN S. A monitoring project planning technique of the water quality spatial distribution in Nansi lake. Procedia Environmental Sciences, 10 (C), 2320, 2011.
  • 9. URBANSKİ A., WOCHNA J. BUBAK A., GRZYBOWSKI I., MATUSZEWSKA W.L., ŁĄCKA K., ŚLIWIŃSKA M., WOJTASIEWICZ B., ZAJĄCZKOWSKI B. Application of Landsat 8 imagery to regional-scale assessment of lake water quality. International Journal of Applied Earth Observation and Geoinformation, 51, 28, 2016.
  • 10. DLAMINI S., NHAPI I., GUMINDOGA W., NHIWATIWA T., DUBE T. Assessing the feasibility of integrating remote sensing and in-situ measurements in monitoring water quality status of Lake Chivero, Zimbabwe. Physics and Chemistry of the Earth, 93, 2, 2016.
  • 11. CHAWİRA M., DUBE T., GUMINDOGA W. Remote sensing based water quality monitoring in Chivero and Manyame lakes of Zimbabwe. Physics and Chemistry of the Earth, 66, 38, 2013.
  • 12. ZHOU Z., ZHAO Y. Research on the water quality monitoring system for inland lakes based on remote sensing. Procedia Environmental Sciences, 10 (B), 1707, 2011.
  • 13. UMAR M., RHOADS B.L., GREENBERG J.A. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. Journal of Hydrology, 556, 325, 2018.
  • 14. KAYA Ş., ŞEKER D.Z., TANIK A. Temporal impact of urbanization on the protection zones of two drinking water reservoirs in Istanbul. Fresenius Environmental Bulletin, 23 (12), 2984, 2014.
  • 15. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (4), 436, 2011.
  • 16. MARQUEZ L.C.G., BEJARANO F.M.T., ESPINOZA A.C.T., RODRÍGUEZ I.R.H. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. Journal of South American Earth Sciences, 82, 231, 2018.
  • 17. MASOCHA M., MURWIRA A., MAGADZA C.H.D., HIRJI R., DUBE T. Remote sensing of surface water quality in relation to catchment condition in Zimbabwe. Physics and Chemistry of the Earth, 100, 13, 2017.
  • 18. OLMANSON L.G., BREZONIK P.L., FINLAY J.C., BAUER M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sensing of Environment, 185, 119, 2016.
  • 19. ROSTOM N.G., SHALABY A.A., ISSA Y.M., AFIFI A.A. Evaluation of Mariut Lake water quality using Hyperspectral Remote Sensing and laboratory works. The Egyptian Journal of Remote Sensing and Space Science, 20, 39, 2017.
  • 20. KİEFER I., ODERMATT D., ANNEVILLE O., WÜEST A., BOUFFARD D. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake. Science of the Total Environment, 527-527, 493, 2015.
  • 21. DÖRNHÖFER K., OPPELT N. Remote sensing for lake research and monitoring - Recent advances. Ecological Indicators, 64, 105, 2016.
  • 22. LOTFİNASABASL S., GUNALE V.R., KHOSROSHAHI M. Applying geographic information systems and remote sensing for water quality assessment of mangrove forest. Acta Ecologica Sinica, 38, 135, 2018.
  • 23. KİM H.C., SON S., KIM Y.H., KHIM J.S., NAM J., CHANG W.K., LEE J.H., LEE C. H., RYU J. Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids. Marine Pollution Bulletin, 121 (1-2), 425, 2017.
  • 24. OLMANSON L.G., BREZONIK P.L., BAUER M.E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sensing of Environment, 130, 254, 2013.
  • 25. KAYA Ş., BAŞAR U.G., KARACA M., ŞEKER D.Z. Assessment of urban heat islands using remotely sensed data. Ekoloji, 21 (84), 107, 2012.
  • 26. TORGERSEN C.E., FAUX R.N., MCINTOSH B.A., POAGE N.J., NORTON D.J. Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sensing of Environment, 76 (3), 386, 2001.
  • 27. MATTİKALLİ N.M., RICHARDS K.S. Estimation of surface water quality changes in response to land use change: Application of the export coefficient model using remote sensing and geographical information system. Journal of Environmental Management, 48 (3), 263, 1996.
  • 28. GÜRSOY Ö. Determining the Most Appropriate Classification Methods for Water Quality. IOP Conference Series Earth and Environmental Science 44 (2), doi:10.1088/1755-1315/44/2/022038, 2016.
  • 29. GÜRSOY Ö., BİRDAL A.C., ÖZYONAR F., KASAKA E. Determining and Monitoring the Water Quality of Kizilirmak River of Turkey: First Results. 36th International Symposium on Remote Sensing of Environment, 11-15 May 2015, Berlin, Germany.
  • 30. GUANTER L., ALONSO L., MORENO J. First results from the PROBA/CHRIS hyperspectral/multiangular satellite system over land and water targets. IEEE Geoscience and Remote Sensing Letters, 2 (3), 250, 2005.
  • 31. RAUTIAINEN M., LANG M., MÕTTUS M., KUUSK A., NILSON T., KUUSK J., LÜKK T. Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sensing of Environment, 112 (5), 2627, 2008.
  • 32. CHAN WAİ J.C., BECKERS P., SPANHOVE T., VANDEN BORRE J. An evaluation of ensemble classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral (CHRIS/Proba) imagery. International Journal of Applied Earth Observation and Geoinformation, 18 (1), 13, 2012.
  • 33. DEMARCHİ L., CHAN J.C.W., MA J., CANTERS F. Mapping impervious surfaces from superresolution enhanced CHRIS/Proba imagery using multiple endmember unmixing. ISPRS Journal of Photogrammetry and Remote Sensing, 72, 99, 2012.
  • 34. MILLÁN V.E.G., SANCHEZ-AZOFEIFA G.A., MALVÁREZ G.C. Mapping Tropical Dry Forest Succession With CHRIS/PROBA Hyperspectral Images Using Nonparametric Decision Trees. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (6), 3081, 2015.
  • 35. Republic of Turkey, Ministry of Environment and Urbanization, Laws on Management of Water Pollution docx URL (accessed on 15.02.2014)
  • 36. GÜRSOY Ö., CANBAZ O., GÖKÇE A., ATUN R. Spectral Classification in Lithological Mapping; A Case Study of Matched Filtering. Cumhuriyet Sci., 38 (4), 731, 2017.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.