PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 04 |

Tytuł artykułu

Construction of ethylene regulatory network based on the phytohormones related gene transcriptome profiling and prediction of transcription factor activities in soybean

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
High floral abscission ratio in soybean (Glycine max L.) leads to serious yield loss in field culture condition. Ethylene is a phytohormone responsible for the regulation of developmental changes and floral abscission ratio in soybean. It is clear that different phytohormones affected overlapping physiological processes, and the physiological effects of phytohormone depended on specific hormone combination rather than the independent activity of each one. Little is known about how ethylene is integrated into the phytohormone metabolism and signal network. The results of phytohormone content analysis and three RNAseq libraries after silver thiosulfate (STS), ethephon (ETH) and control treatment showed that ethylene biosynthesis and signal pathway was affected by STS treatment according to suppress the mRNA abundance of 1-aminocyclopropane- 1-carboxylate (ACC) syntheses genes, while the ETH treatment induced both ethylene biosynthesis and signal pathway components in soybean. A number of genes involved in IAA, GA, CTK and ABA pathways components were activated or depressed correspondingly. The analysis of transcription factors (TFs) in differential transcriptome profiling and TFs prediction of the differentially transcription genes related to all phytohormone biosynthesis showed that TFs MYB played pivotal roles in the process of ethylene interplaying the whole phytohormones metabolism and signal network.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

04

Opis fizyczny

p.1303-1317,fig.,ref.

Twórcy

autor
  • College of Life Sciences, Jilin Normal University, Siping 136000, Jilin, People’s Republic of China
autor
  • College of Life Sciences, Jilin Normal University, Siping 136000, Jilin, People’s Republic of China
autor
  • Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130024, Jilin, People’s Republic of China
autor
  • Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130024, Jilin, People’s Republic of China
autor
  • College of Life Sciences, Jilin Normal University, Siping 136000, Jilin, People’s Republic of China
autor
  • College of Life Sciences, Jilin Normal University, Siping 136000, Jilin, People’s Republic of China

Bibliografia

  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825
  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94
  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristemidentity genes. Proc Natl Acad Sci USA 104:6484–6489
  • Angeli D, Comai M, Danesin M, Dorigoni A, Ruperti B, Ramina A (2002) Interazione tra citochinine ed etilene nel controllo del diradamento del melo. Rivista di Frutticoltura e di Ortofloricoltura 5:56–59
  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:195–203
  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995
  • Barry SB, Giovannoni J (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159
  • Beyer C (1976) Neuroendocrine mechanisms in sexual behavior. In: F Naftolin, KJ Ryan, and IJ Davies (eds), Subcellular mechanisms in reproductive neuroendocrinology, pp 277–308
  • Binder BM, Patterson SE (2009) Ethylene-dependent and -independent regulation of Abscission. Stewart Postharvest Review 5:1–10
  • Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127:450–458
  • Chapman EJ, Estelle ME (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 34:265–285
  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230
  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163
  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic Acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679
  • Djanaguiraman M, Prasad PVV (2010) Ethylene production under high temperature stress causes premature leaf senescence in soybean. Funct Plant Biol 37:1071–1084
  • Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953
  • Ephritikhine G, Fellner M, Vannini C, Lapous D, Barbier-Brygoo H (1999) The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid. Plant J 18:303–314
  • Fehr WR, Caviness CF, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, glycine max. (L). Merrill. Fehr & Caviness et al. Crop Sci 11:929–931
  • Felten J, Vahala J, Love J, Gorzsa´s A, Gerber L, Kumar M, Kangasja¨rvi J, Sundberg B (2011) Ethylene signaling via Ethylene Response Factors (ERFs) modifies wood development in hybrid aspen. BMC Proceedings 5(Suppl 7):I15
  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391
  • Ge X, Chen W, Song S, Wang W, Hu S, Yu J (2008) Transcriptomic profiling of mature embryo from an elite super-hybrid rice LYP9 and its parental lines. BMC Plant Biol 8:114
  • Gergoff G, Chaves A, Bartoli CG (2010) Ethylene regulates ascorbic acid content during dark-induced leaf senescence. Plant Sci 178:207–212
  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, Mc P, Court P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126
  • Hagen G, Guilfoyle TJ, Gray WM (2004) Auxin signal transduction. In: Davies PJ (ed) Plant Hormones. Kluwer Academic Publishers, Dordrecht, pp 282–303
  • He HY, He LF, Gu MH, Li XF (2012) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci 183:123–130
  • Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, et al (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and interlab portability over five microarray platforms. Nucleic Acids Res 36:e141
  • Kuppusamy KT, Walcher CL, Nemhauser JL (2009) Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69:375–381
  • Li CJ, Bangerth F (2003) Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. J Plant Physiol 160:1059–1063
  • Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967
  • Li Y, Zhao H, Duan B, Korpelainen H, Li C (2011) Effect of drought and ABA on growth, photosynthesis and antioxidant system of cotinus coggygria seedlings under two different light conditions. Environ Exp Bot 71:107–113
  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517
  • Martı´n-Rodrı´guez J, Leo´n-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Mu¨ller J, Garcı´a-Garrido JM (2011) Ethylene-dependent/ ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205
  • Mayuoni L, Sharabi-Schwager M, Feldmesser E, Porat R (2011) Effects of ethylene degreening on the transcriptome of mandarin flesh. Postharvest Biol Technol 60:75–82
  • Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KS, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A (2010) Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol 154(4):1929–1956
  • Miyazaki JH, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69:366–370
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNASeq. Nat Methods 5:621–628
  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell 126:467–475
  • Nozue K, Harmer SL, Maloof JN (2011) Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis. Plant Physiol 156:357–372
  • Okuda M, Nang MP, Oshima K, Ishibashi Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2011) The ethylene signal mediates induction of GmATG8i in soybean plants under starvation stress. Biosci Biotechnol Biochem 75:1408–1412
  • Pan YH, Michael TP, Hudson ME, Kay SA, Chory J, Schuler MA (2009) Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways. Plant Physiol 150:858–878
  • Pirrello J, Prasad N, Zhang WS, Chen KS, Mila I, Zouine M, Latche M, Pech JC, Ohme-Takagi M, Regad F, Bouzayen M (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12:190
  • Ren W, Zhu LH, Xu HG, Jin R, Zhou GP (2012) Characterization of a spliced variant of human IRF-3 promoter and its regulation by the transcription factor Sp1. Mol Biol Rep 39(6):6987–6993
  • Robertson F, Skeffington A, Gardner M, Webb A (2009) Interactions between circadian and hormonal signalling in plants. Plant Mol Biol 69:419–427
  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078
  • Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273
  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375
  • Trivellini A, Ferrante A, Vernieri P, Serra G (2011) Effects of promoters and inhibitors of ABA and ethylene on flower senescence of Hibiscus rosa-sinensis L. J Plant Growth Regul 30:175–184
  • Tucker ML, Xue P, Yang R (2010) 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots. J Exp Bot 61:463–472
  • Uchida N, Tasaka M (2010) Intersections between immune responses and morphological regulation in plants. J Exp Bot 61:2539–2547
  • Wang Z, Gerstein M, Snyder M (2009) RNA–Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63
  • Wei PC, Tan F, Gao XQ, Zhang XQ, Wang GQ, Xu H, Li LJ, Chen J, Wang XC (2010) Overexpression of AtDOF4.7, an Arabidopsis DOF family transcription factor, induces floral organ abscission deficiency in Arabidopsis. Plant Physiol 153:1031–1045
  • Weiss D, Ori N (2007) Mechanisms of cross-talk between gibberellin and other hormones. Plant Physiol 144:1240–1246
  • Wu ZJ, Jenkins BD, Rynearson TA, Dyhrman ST, Saito MA, Mercier M, Whitney LP (2010) Empirical Bayes Analysis of Sequencingbased Transcriptional Profiling without Replicates. BMC Bioinformatics 11:564
  • Xu F, Meng T, Li P, Yu Y, Cui Y, Wang Y, Gong Q, Wang NN (2011) A Soybean Dual-Specificity Kinase, GmSARK, and Its Arabidopsis Homolog, AtSARK, Regulate Leaf Senescence through Synergistic Actions of Auxin and Ethylene. Plant Physiol 157:2131–2153
  • Xue J, Bao YY, Li BL, Cheng YB, Peng ZY, Liu H, Xu HJ, Zhu ZR, Lou YG, Cheng JA, Zhang CX (2010) Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS ONE 5:e14233
  • Yang SF (1985) Biosynthesis and action of ethylene. Hort Sci 20:41–45
  • Zhang W, Wen CK (2010) Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiol Bioch 48:45–53

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ed502027-c71c-485b-9666-c5088767a59e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.