PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 2 |

Tytuł artykułu

Fecal bacterial communities in insectivorous bats from the Netherlands and their role as a possible vector for foodborne diseases

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bats are commonly regarded as vectors for viruses, but little is known about bacterial communities in bats and the possible role of bats in the transmission cycle of foodborne diseases. To gain more insight, microbial communities in fecal samples from 37 insectivorous bats of different species from the Netherlands were investigated by polymerase chain reaction and denaturant gradient gel electrophoresis (PCR-DGGE). Subsequently, 10 samples from the following bat species: common pipistrelle (Pipistrellus pipistrellus; n = 3), Daubenton's bat (Myotis daubentonii; n = 3), serotine bat (Eptesicus serotinus; n = 1), whiskered bat (Myotis mystacinus; n = 1), Geoffroy's bat (Myotis emarginatus; n = 1) and Natterer's bat (Myotis nattereri; n = 1) were selected and used in bacterial 16S rDNA cloning and sequencing. The fecal microbiota in bats was found to be diverse with predominant bacterial genera Carnobacterium, Serratia, Pseudomonas, Enterococcus and Yersinia. The presence of opportunistic pathogens Citrobacter freundii, Escherichia coli, Enterococcus faecalis, Serratia fonticola and Rahnella aquatilis was also recorded. Based on cloning results, we found no proof that bats in the Netherlands are a major vector for the transmission of bacterial zoonotic diseases, although previous findings in literature reported isolation of foodborne pathogens from bats.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.475-483,fig.,ref.

Twórcy

  • Laboratory of Food Microbiology, Wageningen University and Research, Wageningen Campus, P.O. Box 17, 6700 AA Wageningen, The Netherlands
autor
  • Laboratory of Food Microbiology, Wageningen University and Research, Wageningen Campus, P.O. Box 17, 6700 AA Wageningen, The Netherlands
autor
  • Ad Hoc Zoogdieronderzoek, 6708 GA Wageningen, The Netherlands
  • Laboratory of Food Microbiology, Wageningen University and Research, Wageningen Campus, P.O. Box 17, 6700 AA Wageningen, The Netherlands

Bibliografia

  • ALAM, M. J., and L. ZUREK. 2004. Association of Escherichia coli O157: H7 with houseflies on a cattle farm. Applied and Environmental Microbiology, 70: 7578–7580.
  • BANSKAR, S., D. T. MOURYA, and Y. S. SHOUCHE. 2016. Bacterial diversity indicates dietary overlap among bats of differ ent feeding habits. Microbiological Research, 182: 99–108.
  • BENGTSSON-PALME, J., E. KRISTIANSSON, and J. D. G. LARSSON. 2018. Environmental factors influencing the development and spread of antibiotic resistance, FEMS Microbiology Reviews, 42: 1.
  • BOSERET, G., B. LOSSON, J. G. MAINIL, E. THIRY, and C. SAEGERMAN. 2013. Zoonoses in pet birds: review and perspectives. Veterinary Research, 44: 36–36.
  • BRODERICK, N. A., K. F. RAFFA, R. M. GOODMAN, and J. HANDELS MAN. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and cultureIndependent methods. Applied and Environmental Microbiology, 70: 293–300.
  • BUTLER, J. F., A. GARCIA-MARUNIAK, F. MEEK, and J. E. MARUNIAK. 2010. Wild Florida house flies (Musca domestica) as carriers of pathogenic bacteria. Florida Entomologist, 93: 218–223.
  • CALISHER, C. H., J. E. CHILDS, H. E. FIELD, K. V. HOLMES, and T.SCHOUNTZ. 2006. Bats: Important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19: 531–545.
  • CARRILLO-ARAUJO, M., N. TAŞ, R. J. ALCÁNTARA-HERNÁNDEZ, O. GAONA, J. E. SCHONDUBE, R. A. MEDELLÍN, J. K. JANSSON, and L. I. FALCÓN. 2015. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Frontiers in Microbiology, 6: 447.
  • CATTO, C., A. HUTSON, P. RACCEY, and P. STEPHENSON. 1996. For aging behaviour and habitat use of the serotine bat (Epte sicus serotinus) in southern England. Journal of Zoology (London), 238: 623–633.
  • CHILD, J. 1994. Bats in my belfry. The Lancet, 343: 5–6.
  • DI BELLA, C., C. PIRAINO, S. CARACAPPA, L. FORNASARI, C. VIOLANI, and B. ZAVA. 2014. Enteric microflora in Italian Chiroptera. Journal of Mountain Ecology, 7 (Suppl.): 221–224.
  • FIELD, H., C. DE JONG, D. MELVILLE, C. SMITH, I. SMITH, A. BROOS, Y. H. KUNG, A. MCLAUGHLIN, and A. ZEDDEMAN. 2011. Hendra virus infection dynamics in Australian fruit bats. PLoS ONE, 6: e28678.
  • GRÜNWALD, S., M. PILHOFER, and W. HÖLL. 2010. Microbial associations in gut systems of wood- and bark-inhabiting long horned beetles [Coleoptera: Cerambycidae]. Systematic and Applied Microbiology, 33: 25–34.
  • GUARNER, F., and J. R. MALAGELADA. 2003. Gut flora in health and disease. Lancet, 361: 512–519.
  • HAEGEMAN, B., J. HAMELIN, J. MORIARTY, P. NEAL, J. DUSHOFF, and J. S. WEITZ. 2013. Robust estimation of microbial diversity in theory and in practice. The ISME Journal, 7: 1092–1101.
  • HALD, B., M. N. SKOV, E. M. NIELSEN, C. RAHBEK, J. J. MADSEN, M. WAINØ, M. CHRIÉL, S. NORDENTOFT, D. L. BAG GESEN, and M. MADSEN. 2015. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms. Acta Veterinaria Scandinavica, 58: 11.
  • HAZELEGER, W. C., W. F. JACOBS-REITSMA, P. H. C. LINA, A. G. DE BOER, T. BOSCH, A. H. A. M. VAN HOEK, and R. R. BEUMER. 2018. Wild, insectivorous bats might be carriers of Campylobacter spp. PLoS ONE, 13: e0190647.
  • HORMAN, A., R. RIMHANEN-FINNE, L. MAUNULA, C. H. VON BONS DORFF, N. TORVELA, A. HEIKINHEIMO, and M. L. HANNINEN. 2004. Campylobacter spp., Giardia spp., Crypto sporidium spp., noroviruses, and indicator organisms in surface water in southwestern Finland, 2000–2001. Applied and Environmental Microbiology, 70: 87–95.
  • HUBER, T., G. FAULKNER, and P. HUGENHOLTZ. 2004. Belle rophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 20: 2317–2319.
  • INGALA, M. R., N. B. SIMMONS, C. WULTSCH, K. KRAMPIS, K. A. SPEER, and S. L. PERKINS. 2018. Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution. Frontiers in Microbiology, 9: 803.
  • JARZEMBOWSKI, T. 2002. Commensal aerobic bacterial flora of the gastrointestinal tract of Pipistrellus nathusii (Chiroptera: Vespertilionidae): lack of Escherichia coli in fecal samples. Acta Chiropterologica, 4: 99–106.
  • LAUBER, C. L., N. ZHOU, J. I. GORDON, R. KNIGHT, and N. FIERER. 2010. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiology Letters, 307: 80–86.
  • LEHMAN, R., J. LUNDGREN, and L. PETZKE. 2009. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their modification by laboratory rearing and antibiotic treatment. Microbial Ecology, 57: 349–358.
  • LI, J., L. LI, H. JIANG, L. YUAN, L. ZHANG, J.-E. MA, Z. ZHANG, M. CHENG, and J. CHEN. 2018. Fecal bacteriome and mycobiome in bats with diverse diets in South China. Current Microbiology, 75: 1352–1361.
  • LIMA, L. J., V. VAN DER VELPEN, J. WOLKERS-ROOIJACKERS, H. J. KAMPHUIS, M. H. ZWIETERING, and M. R. NOUT. 2012. Microbiota dynamics and diversity at different stages of industrial processing of cocoa beans into cocoa powder. Applied and Environmental Microbiology, 78: 2904–2913.
  • MARTÍN, R., G. HEILIG, E. ZOETENDAL, H. SMIDT, and J. RODRÍGUEZ. 2007. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. Journal of Applied Microbiology, 103: 2638–2644.
  • METZLER-ZEBELI, B., P. LAWLOR, E. MAGOWAN, and Q. ZEBELI. 2016. Effect of freezing conditions on fecal bacterial composition in pigs. Animals, 6: 18.
  • MÜHLDORFER, K. 2013. Bats and bacterial pathogens: a review. Zoonoses and Public Health, 60: 93–103.
  • MÜHLDORFER, K., G. WIBBELT, J. HAENSEL, J. RIEHM, and S. SPECK. 2010. Yersinia species isolated from bats, Germany. Emerging Infectious Diseases, 16: 578–580.
  • MUYZER, G., and K. SMALLA. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73: 127–141.
  • MUYZER, G., E. C. DE WAAL, and A. G. UITTERLINDEN. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59: 695–700.
  • NÜBEL, U., B. ENGELEN, A. FELSKE, J. SNAIDR, A. WIESHUBER, R. I. AMANN, W. LUDWIG, and H. BACKHAUS. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Pae ni bacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178: 5636–5643.
  • PHILLIPS, C. D., G. PHELAN, S. E. DOWD, M. M. MCDONOUGH, A. W. FERGUSON, J. DELTON HANSON, L. SILES, N. ORDÓÑEZGARZA, M. SAN FRANCISCO, and R. J. BAKER. 2012. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Molecular Ecology, 21: 2617–2627.
  • REYES, A. W. B., H. G. ROVIRA, J. S. MASANGKAY, T. J. RAMIREZ, Y. YOSHIKAWA, and W. N. BATICADOS. 2011. Polymerase chain reaction assay and conventional isolation of Salmonella spp. from Philippine bats. Acta Scientiae Veterinariae, 39(1): 947.
  • ROZALSKA, B., G. RADZICKI, B. SADOWSKA, J. MARKOWSKI, and W. RUDNICKA. 1998. Aerobic microflora of Myotis myotis (Borkhausen, 1797) and Barbastella barbastellus (Schreber, 1774). Bulletin of the Polish Academy of Sciences (Biological Sciences), 46: 59–67.
  • SANGUINETTI, C. J., N. E. DIAS, and A. SIMPSON. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 17: 914–921.
  • SCHOUNTZ, T. 2014. Immunology of bats and their viruses: challenges and opportunities. Viruses, 6: 4880–4901.
  • SKRODENYTĖ-ARBAČIAUSKIENĖ, V., A. SRUOGA, D. BUTKAUSKAS, and K. SKRUPSKELIS. 2008. Phylogenetic analysis of intestinal bacteria of freshwater salmon Salmo salar and sea trout Salmo trutta trutta and diet. Fisheries Science, 74: 1307–1314.
  • SMITH, K. E., F. ANDERSON, C. MEDUS, F. LEANO, and J. ADAMS. 2005. Outbreaks of salmonellosis at elementary schools associated with dissection of owl pellets. Vector Borne and Zoonotic Diseases, 5: 133–136.
  • VAN HOEK, A. H. A. M., C. VEENMAN, W. M. VAN OVERBEEK, G. LYNCH, A. M. DE RODA HUSMAN, and H. BLAAK. 2015. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Inter national Journal of Food Microbiology, 204: 1–8.
  • VAN SCHAIK, J., R. JANSSEN, T. BOSCH, A.-J. HAARSMA, J. J. A. DEKKER, and B. KRANSTAUBE. 2015. Bats swarm where they hibernate: compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS ONE, 10: e0130850.
  • VAUGHAN, N. 1997. The diets of British bats (Chiroptera). Mammal Review, 27: 77–94.
  • VEIKKOLAINEN, V., E. J. VESTERINEN, T. M. LILLEY, and A. T. PULLIAINEN. 2014. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerging In fectious Diseases, 20: 960–967.
  • VENGUST, M., T. KNAPIC, and J. S. WEESE. 2018. The fecal bacterial microbiota of bats; Slovenia. PLoS ONE, 13: e0196728.
  • ZAHN, A., S. BAUER, E. KRINER, and J. HOLZHAIDER. 2010. For aging habitats of Myotis emarginatus in Central Europe. European Journal of Wildlife Research, 56: 395–400.
  • ZUREK, L., C. SCHAL, and D. W. WATSON. 2000. Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. Journal of Medical Entomology, 37: 924–928.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-ed4ae7f0-2166-46c4-84ab-9f741e629422
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.