PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 68 | 4 |

Tytuł artykułu

Nanomaterials in food contact materials; considerations for risk assessment

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nanotechnology applications in the food industry, including food contact materials, offer many potential benefits for consumers and manufacturers alike. The article discusses the migration of nanoparticles from food contact materials and the possible health risks associated with in the context of insufficient knowledge of the potential exposure to nanomaterial. The importance of gaps in the general knowledge on the behaviour and biological interactions of nanomaterials in biological systems becomes crucial for risk assessment. The article also discussed numerous doubts concerning the measurements of biological reactions in animal tests and the need for new approaches in the interpretation of data from nanoparticles studies in vivo. The article underlines the need to develop predictive and validated toxicological tests that can be used to screen for potential hazards, and also to develop new methodology for measuring nanoparticles in biological matrices to assess human exposure. Further studies should focus on understanding the mechanisms of action. Nanoparticles exhibit chemical and physical properties that significantly differ from those substances at a large size. Different properties of nanoparticles may lead to different toxicological properties. From that reason nanoparticles, in each case, are individually assessed by the European Food Standard Agency (EFSA) in terms of health risk before the European Commission authorizes them to be used in food contact materials.
PL
Zastosowanie nanotechnologii w przemyśle spożywczym, w tym w materiałach do kontaktu z żywnością, przynosi wiele potencjalnych korzyści konsumentom i producentom. W artykule omówiono zagadnienie migracji nanocząsteczek z materiałów kontaktujących się z żywnością oraz możliwe ryzyko dla zdrowia konsumenta, w kontekście niewystarczającej wiedzy na temat potencjalnego narażenia na nanomateriały. Brak wiedzy na temat zachowania i biologicznych interakcji nanomateriałów w systemach biologicznych stanowi podstawowy problem przy ocenie ryzyka. W artykule omówiono również liczne wątpliwości dotyczące pomiarów odpowiedzi biologicznej w testach na zwierzętach oraz potrzebę nowych podejść w interpretacji danych otrzymanych z badań nanocząsteczek w warunkach in vivo. Podkreślono potrzebę opracowania predyktywnych i zatwierdzonych testów toksykologicznych, które można wykorzystać przy badaniu potencjalnych zagrożeń, a także opracowania nowej metodologii oznaczania nanocząsteczek w matrycach biologicznych w celu oceny narażenia ludzi. Dalsze badania powinny koncentrować się na poznaniu mechanizmów ich działania. Właściwości chemiczne i fizyczne nanocząsteczek znacznie różnią się od takich substancji o większych rozmiarach. Różne właściwości nanocząsteczek mogą też powodować różne właściwości toksykologiczne. Z tego powodu substancje w postaci nanocząsteczek, w każdym przypadku, oceniane są indywidualnie przez Europejski Urząd ds. Bezpieczeństwa Żywności (EFSA) pod względem ryzyka dla zdrowia, zanim Komisja Europejska zezwoli na ich stosowanie w materiałach do kontaktu z żywnością.

Wydawca

-

Rocznik

Tom

68

Numer

4

Opis fizyczny

p.321-329,ref.

Twórcy

  • National Institute of Public Health - National Institute of Hygiene, 24 Chocimska street, 00-791 Warsaw, Poland
  • Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska street, 00-791 Warsaw, Poland

Bibliografia

  • 1. Abreu de A. P., Cruz J. M., Angulo I. and Losada P. P.: Mass transport studies of different additives in polyamide and exfoliated nanocomposite polyamide films for food industry. Packag Technol Sci. 2010;23:59-68. doi: 10.1002/pts.879.
  • 2. Bott J. Stoermer A., Franz R.: Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs. Food Add Contam: Part A 2014;31(10):1769-1782.
  • 3. Bouwmeester H., Dekkers S., Noordam M. Y., Hagens W. I., Bulder A. S., De Heer C., Ten Voorde S. C. G., Susan W. P. Wijnhoven S. W. P., Marvin H. J. P., Sips A. J.A.M.: Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 2009;53: 52–62.
  • 4. Bove P., Malvindi M. A., Kote S. S., Bertorelli R., Summa M., Sabella S.: Dissolution test for risk assessment of nanoparticles: a pilot study. Nanoscale 2017;9:6315-6326. doi: 10.1039/c6nr08131b.
  • 5. Bracho D., Dougnac V. N., Palza H., and Quijada R.: Fictionalization of silica nanoparticles for polypropylene nanocomposite applications. J. Nanomater. 2012:263915. doi: 10.1155/2012/263915.
  • 6. Bratovcic A., Odobašić A., Ćatić S., Šestan I.: Application of polymer nanocomposite materials in food packaging. Croat. J. Food Sci. Technol. 2015;7:86-94. doi: 10.17508/CJFST.2015.7.2.06.
  • 7. Chang P. R., Jian R., Yu, J., Ma X.: Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr. Polym. 2010;80:420-425. doi: 10.1016/j.carbpol. 2009.11.041.
  • 8. Cardenas G., Díaz J., Meléndrez M., Cruzat C., Cancino A.G.: Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym. Bull. 2009;62:511-524. doi: 10.1007/s00289-008-0031-x.
  • 9. Chaudhry Q., Scotter M., Blackburn J., Ross B., Boxall A., Castle L., Aitken R, Watkins R.: Applications and implications of nanotechnologies for the food sector. Food Addit Contam 2008;25(3):241-258.
  • 10. Chaundhry Q., Castle L., Bradley E., Blackburn J., Aitken R., Boxall A.: Assessment of current and projected applications of nanontechnology for food contact materials in relation to consumer safety and regulatory implications. Project A03063, UK Food Standards Agency & Central Science Laboratory, London 2008
  • 11. Cushen M., Kerry J., Morris M., Cruz-Romero M., Cummins E.: Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food an associated exposure assessment. J. Agric Food Chem. 2014;62(6):1403-1411.
  • 12. Cushen M., Kerry J., Morris M., Cruz-Romero M., Cummins E.: Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem. 2013;139(1-4):389-397.
  • 13. Cwiek-Ludwicka K., Ludwicki J. K.: Endocrine disruptors in food contact materials; is there a health threat? Rocz Panstw Zakl Hig. 2014;65:169-177.
  • 14. Cwiek-Ludwicka K., Pawlicka M., Starski A., Półtorak H., Karłowski K.: Badanie migracji pierwszorzędowych amin aromatycznych (PAAs) z wielowarstwowych opakowań żywności metodą HPLC. [Studies on primary aromatic amines (PAAs) migration from multilayer plastic food packaging by HPLC method]. Rocz Panstw Zakl Hig. 2011;62:371-375.
  • 15. Dalmas F., Cavaille J. Y., Gauthier C., Chazeau L., Dendievel R.: Visco elastic behaviour and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Composites Sci. Technol. 2007;67:829–839. doi: 10.1016/j.compscitech.2006.01.030.
  • 16. Duncan T. V.: Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011;363:1-24.
  • 17. EC. Regulation (EC) No. 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Off J Eur Union L 338/4
  • 18. Echegoyen Y., Nerin C.: Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 2013;62:16-22.
  • 19. EFSA. Scientific opinion of the scientific committee on a request from the European Commission on the potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J. 2009;958:1-39.
  • 20. EFSA. Guidance of the risk assessment of the application of nanosciences and nanotechnologies in the food and feed chain. EFSA J. 2011:95(5):21-40.
  • 21. Esthappan S. K., Sinha M. K. Katiyar P., Srivastav A., Joseph R.: Polypropylene/zinc oxide nanocomposite fibers: morphology and thermal analysis. J. Polym. Mater. 2013;30:79-89.
  • 22. EU 2011. Commission Recommendation No 2011/696 of 18 October 2011 on the definition of nanomaterial. Off J Eur Union L 275, 38-40
  • 23. EU 2011. Regulation (EU) No. 10/2011 of the European Parliament and of the Council of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union L 12/1.
  • 24. EU 2012. Commission Regulation (EU) No 1183/2012 of 30 November 2012 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union L 338/11.
  • 25. EU 2016. Commission Regulation (EU) No 2016/1416 of 24 August 2016 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union L 230, 22-42
  • 26. Geiser M., Rothen-Rutishauser B., Kapp N., Schürch S., Kreyling W., Schulz H. Semmler M., Hof V. I. Heyder J., and Gehr P.: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005;113:1555–1560. doi:10.1289/ehp.8006.
  • 27. Govers M., Termont D., Vanaken G.A., Vandermeer R.: Characterization of the adsorption of conjugated and unconjugated bile-acids to insoluble amorphous calciumphosphate. Journal of Lipid Research 1994;35(5):741-748.
  • 28. Grudziński I.P.: Bezpieczeństwo nanoproduktów leczniczych: nowe obszary badań toksykologicznych. [Safety of medicinal nanoproducts: new areas of toxicological research]. Rocz Panstw Zakl Hig 2011;62:239-246.
  • 29. Ham M., Kim J.C., Chang J.H.: Thermal property, morphology, optical transparency, and gas permeability of PVA/SPT nanocomposite films and equi-biaxial stretching films. Polym. Korea 2013;37:579-586. doi: 10.7317/pk.2013.37.5.579.
  • 30. Hatzigrigoriu N.B., Papaspirydes C.D.: Nanotechnology in plastic food-contact materials. J. Appl. Polymer Sci. 2011;122:3719-3738.
  • 31. Hoet P., Bruske-Hohlfeld I., Salata O.: Nanoparticles – known and unknown health risks. J Nanobiotechnol. 2004;2:12. doi:10.1186/1477-3155-2-12.
  • 32. Huang Y., Chen S., Bing X.: Nanosilver migrated into food-simulating solutions from commercialy available food fresh containers. Packag Technol Sci 2011;24(5):291:297.
  • 33. Huang J. I., Li X., Zhou W.: Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 2015;45:187-199.
  • 34. ISO. International Organization for Standardization, ISO/TS 27687: Nanotechnologies - Terminology and definitions for nano-objects - Nanoparticle, nanofibre and nanoplate. 2008:1-14.
  • 35. Jokar M., Pedersen G.A., Loeschner K.: Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review. Food Addit Contam. Part A. 2017;34(3):434-450, doi: 10.1080/19440049.2016.1271462.
  • 36. Kanapilly G.M., Diel J.H.: Ultrafine 239PuO2 Aerosol Generation, Characterization and Short-term Inhalation Study in the Rat. Health Phys. 1980;39:505-519.
  • 37. Krug H. F, Wick P.: Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl. 2011;50:1260-1278.
  • 38. Lee Y., Kim, D., Seo, J., Han, H., Khan, S. B.: Preparation and characterization of poly(propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties. Polym. Int. 2013;62:1386-1394. doi: 10.1002/pi.4434.
  • 39. Li R., Liu C. H., Ma J., Yang Y. J. and Wu H. X.: Effect of orgtitanium phosphonate on the properties of chitosan films. Polym. Bull. 2011;67: 77-89. doi: 10.1007/s00289-010-0404-9.
  • 40. Lin N., Huang J., Dufresne A.: Preparation properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 2012;4(11):3274-3294; doi: 10.1039/c2nr30260h.
  • 41. Lomer M. C., Thompson R. P., Powell J. J.: Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc. Nutr. Soc. 2002;61(1): 123-130.
  • 42. Lövenstam G., Rauscher H., Roebben G., Sokull Klütten B., Gibson N., Putaud J.P. and Stamm H.: Considerations on a definition of nanomaterial for regulatory purposes. JRC (Joint Research Centre) 2010 Reference Report, EUR 24403 EN, doi 10.2788/98686.
  • 43. Maynard, A.D., Aitken, R.J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M.A., Ryan, J., Seaton, A., Stone, V., Tinkle S.S., Tran L., Walker N.J., Warheitet D.B.: Safe handling of nanotechnology. Nature 2006;444:267-269.
  • 44. Metak A.M., Nabhani F., Connoly S.N.: Migration of engineered nanoparticles from packaging into food products. LWT – Food Sci Technol. 2015;64(2):781-787.
  • 45. Nalçabasmaz S., Zehra Ayhan Z.,2 Sossio Cimmino S., Silvestre C. and Duraccio D.: Effects of PP-based nanopackaging on the overall quality and shelf life of ready-to-eat salami. Packag. Technol. Sci. 2017. DOI: 10.1002/pts.2309.
  • 46. Nel A., Xia T., Mädler L., Li N.: Toxic potential of materials at the nanolevel. Science 2006;311:622-627.
  • 47. Oberdorster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D.: Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005;2:8.
  • 48. Podsiadlo P., Choi S. Y., Shim B., Lee J., Cuddihy M., and Kotov N. A.: Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules. 2005;6:2914-2918. doi: 10.1021/bm050333u
  • 49. Prateek T. V. K, Gupta R. K.: Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 2016;116, 4260–4317. doi: 10.1021/acs.chemrev.5b00495.
  • 50. Rafieian F., Simonsen J.: Fabrication and characterization of carboxylated cellulose nanocrystals reinforced glutenin nanocomposite. Cellulose 2014;21:4167-4180. doi: 10.1007/s10570-014-0305-4.
  • 51. Royal Society. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and the Royal Academy of Engineering, London, 2004.
  • 52. Sandquist D.: New horizons for microfibrillated cellulose. Appita J. 2013;66,:156-162.
  • 53. Schuetz M. R., Kalo H., Linkebein T., Groschel A. H., Muller A. H. E., Wilkie C. A.: Shear stiff, surface modified, mica-like nanoplatelets: a novel filler for polymer nanocomposites. J. Mater. Chem. 2011;21:12110-12116. doi: 10.1039/C1JM11443C.
  • 54. Sharma Ch., Dhiman R., Rokana N., Panwar H.: Nanotechnology: An untapped resource for food packaging. Frontiers in Microbiology 2017;8:1735. doi: 10.3389/fmicb.2017.01735.
  • 55. Silvestre C., Duraccio D., Cimmino S.: Food packaging based on polymer nanomaterials. Progress in Polymer Science, 2011;36(12), 1766-1782.
  • 56. Snopczyński T., Góralczyk K., Czaja K., Struciński P., Hernik A., Korcz W., Ludwicki J. K.: Nanotechnologia – możliwości i zagrożenia. [Nanotechnology – possibilities and hazards]. Rocz Panstw Zakl Hig. 2009;60(2):101-111.
  • 57. Störmer A., Bott J., Kemmer D., Franz R.: Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci Technol 2017;63:39-50.
  • 58. Swain S. K., Pradhan, A. K., and Sahu, H. S.: Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes. Carbohydr. Polym. 2013;94:663-668. doi: 10.1016/j.carbpol.2013.01.056.
  • 59. Tiede K., Boxall, A. B. A., Tear S. P., Lewis J., David H., Hassellöv M.: Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam. Part A, 2008;25(7):795-821.
  • 60. Weiss J., Takhistov, P., Mc Clements D. J.: Functional materials in food nanotechnology. J. Food Sci. 2006;71:R107–R116. doi: 10.1111/j.1750-3841.2006.00195.x.
  • 61. Wyser Y., Adams M., Avella M., Carlander D., Garcia L., Pieper G., Rennen M., Schuermans J., Weiss J.: Outlook and challenges of nanotechnologies for food packaging. Packag Technol Sci. 2016;29:615-648.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ed369718-d0fb-47ff-a249-10e3a56ee46b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.