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separate the useful signal during diagnosing diagnostic of 

technical objects.  
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INTRODUCTION 

 

The assessment of condition of technical objects is the 

most important scientific - technical task. For a current 

state of Ukrainian economy the extension of service life 

or forecasting of planned removal from service of the 

objects of national economy, has huge national economic 

value. It is known that a lot of technical objects in 

Ukraine depleted their planned resource, however they 

continue to operate because of the lack of funds for their 

repair or replacement. For example, today at the plants of 

Ukraine more than 230 thousand Lifting constructions are 

being operated, 84% from which have already worked out 

their rated life [1]. 

Their further safe operation is possible only after 

carrying out expert inspection (technical diagnosis) at the 

heart of which the assessment of technical condition is. 

The problem of an objective (quantitative) assessment of 

technical condition is actual and gives as considerable 

economic effect, because it is about further continuation 

of operation in case of the positive expert report, as it 

prevents appearing of man-made and dangerous situations 

(accidents) in case of the termination of further operation 

at the negative expert report. Getting a quantitative 

assessment of technical condition allows us to define 

more objectively the opportunity and terms of further safe 

operation, to reduce costs for maintenance of their 

working capacity. It is especially actual to diagnose 

objects of the increased danger to which bridges, 

pipelines, carrying and lifting machines and etc. belong 

[2]. 

Researches testify that destruction of constructions 

because of fatigue damages is one of the main cases of 

constructions premature failure from the operation. The 

fatigue failure process is multistage and complicated. The 

rate of this process is influenced by various factors. 

However, the mechanism of fatigue failure is identical to 

a wide range of materials and types of loadings. Most of 

the researchers tend to the model of material fatigue 

failure [3] which describes development of the fatigue 

failure process as the increase of the part of the distended 

metal layer on the surface of a product and in full. 

Therefore, to estimate a residual resource, it is necessary 

to diagnose a part of the distended metal in the most 

loaded zones of the technical object. 

Diagnostics of the material condition of the technical 

object can be carried out with the use of various methods 

of nondestructive control. For metal constructions the 

most common are ultrasonic, different types of magnetic, 

x-ray, acoustic emission and other methods. A common 

problem, for all types of diagnostics, irrespective of 

physical sense of the process, is the low level of a useful 

signal from the sensor which can be compared with noise 

level. And if, considerable improvement of measuring 

devices in the sensitivity and selectivity field of sensors is 

extremely difficult [4], so modern methods of processing 

of the received signal allow to increase considerably the 

quality of diagnostics. 

The aim of the work: the usage of nonlinear 

mechanics, chaos theory and the theory of fractals for 

extraction of a useful signal during diagnostics of 

technical objects 

 

MATERIALS AND METHODS 

 

Development of modern mechanics (both theoretical 

and experimental) mainly relies on the concept of the sets 

having nonintegral dimension. The concept of fractional 

(fractal) dimension was firstly formulated in the works of 

Hausdorff [5] and Bezikovich [6] which the researches of 

outstanding mathematicians of the end of XIX - the 

beginning of the XX century such as the Cantor, 

Weierstrass, Peano, Koch, Sierpinski [5-8] preceded. 

Splash in works on fractals affected such fundamental 

directions as non-equilibrium thermodynamics [10, 11] 

and cosmology [8, 9], the theory of dynamic chaos [10, 

11] and hydrodynamic turbulence [12, 13, 14], research of 

phase transitions [15, 16]. 

Adequate mathematical concept of the kinetics 

process, is given by diffusive formalism [17, 18]. Thus 

establishment of coherent communication in ensemble of 

initial reagents leads to the collective effects not allowing 

to consider the process in the usual way. During the 

process of formation of fractality the mode in which it is 

necessary to consider establishment processes of the 

modulated structure in the field of minimally stable 

structural elements corresponding to the regularities of 

second order phase transition [19] is realized. The 

synergetic approach is used for the adequate description 

of this stage [20]. 

The task of the researches is development of the 

approach which is based on the analysis of collective 

effects in the synergetic scheme which would allow to 

add the concrete mechanism of structurization on the 

http://www.multitran.ru/c/m.exe?t=2106059_1_2&s1=%EF%EE%E4%FA%B8%EC%ED%EE-%F2%F0%E0%ED%F1%EF%EE%F0%F2%ED%FB%E5%20%EC%E0%F8%E8%ED%FB
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basis of the formalism of the fractal Brownian motion to 

the analysis and to consider the multilevel plan of 

structurization as gradual development of cluster fractal 

structure. 

 

RESULTS 

 

The rules (an algorithm) of the kinetic picture of 

structurization will be formulated according to the 

discrete method of cellular automata [19]. 

We will model the process with a two-dimensional 

hexagonal lattice (L×L size). In the cells of the lattice 

there are integral numbers (Fig. 1). If the number exceeds 

one, the cell (a structural element) is unstable that is 

expressed in decreasing of the number by 2 in it with 

simultaneous increase the numbers in two cells adjoining 

this one from below by 1. 

 

 
Fig. 1. Cellular automaton 

 

If disturbance of the medium is insufficient, so 

indignation can't extend far, and activity decays quickly. 

If, on the contrary, disturbance reached a limit near some 

value at which concentration of minimally stable 

structural elements (SE) is equal to a percolation 

threshold, i.e. to the appearance point of the infinite 

coherent cluster from them, so any disturbance can extend 

over the system to infinite distance, and the system 

behaves as an integral whole. 

Rank parameter (a number coherently connected with 

the SE) starts accepting nonzero value at the transition of 

the control parameter through the critical value that means 

the appearance of complete characteristics in the system 

[20]. The critical point divides chaotic (subcritical) and 

ordered (supercritical) states therefore in it any small 

influence can have essential impact on the system. 

In the description of the state of the system structure 

in terms of the minimally stable elements (MSE) MSE 

share is like a control parameter, and a rank parameter is 

probability that some cell belongs to infinitely big cluster 

from them, i.e. that impact on it will extend to infinite 

distance that corresponds to the picture of establishment 

of the modulated structure [18] corresponding to 

regularities of second-order phase transition [20]. 

As it is known from the theory of phase transitions, 

such state is formed critically - the ordered phase 

develops as a self-similar structure in which there is no 

typical scale [20]. Formally the quality of self-similarity 

is expressed by uniformity of distribution function 

)(xP on the x amplitude, responsible for collating [17, 

19]: 

)()/( xPxxxP cc

 .                 (1) 

According to (1) changing of the scale of cx  of a 

random value x leads to the multiplicative change of 

probability of its realization P  characterized by an 

exponent. Entering the scaled variable cxxy /  and 

distribution function )()( yPyyP  , it is possible to 

copy (1) as: 

)()( yPxxP   ,                      (2) 

from which follows that in the limit of big and small 

values of a stochastic variable x  when the  function 

)()( yPyyP  can be constant, distribution 

)()( yPxxP  takes the power form [16-20]. 

The presented kinetic picture corresponds to the field 

concept of structurization which is written out from the 

first principles that proves accessory of the structurization 

process in polymeric material to same universality class 

with second-order phase transition. 

These ideas rely on the idea that original structure will 

be transformed in the final one not in a direct way, but 

through intermediate stages. Achievement the most 

thermodynamically favorable state in the system is 

realized according to the branch scheme, according to 

filling of local minima of thermodynamic potential. In 

turn each of the minima, distinguishable at this scale, at 

further increase finds thinner structure of minima which 

have smaller depth  and corresponds to the  closer one-

dimensional long-period structures (Fig. 2). 

 

 
Fig. 2. Structure of a charge pattern of the 

thermodynamic potential [14] 

 

As these minima correspond to stable elements of the 

microstructure, so such assumption means master-slave 

hierarchy of their behavior during structure evolution: 

reorganization of rough details is provided with 

corresponding change of the small ones. Graphically it is 

http://www.multitran.ru/c/m.exe?t=392592_1_2&s1=%EA%EB%E5%F2%EE%F7%ED%FB%E9%20%E0%E2%F2%EE%EC%E0%F2
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represented, if we match each minimum with a point in 

ultrametric space. Then system evolution reacts on the 

"movement" on the points of a Cayley hierarchical tree 

(Fig. 3) representing a geometric image of ultrametric 

space.  

The most densely located tree points are connected 

with the smallest structure elements, going to a frame we 

pass to larger ones. Branches of the tree react on the 

elementary acts of structure reorganization when 

coordinated and interdependent behavior of its details at 

one level leads to spontaneous reorganization on the 

higher one (accretion of several branches in one point). 

The fractal topology of the mechanism structurization 

means that the set of parallel channels of structurization 

which existence is supposed in model of the branch 

process (Fig. 3) acts independently. Such a situation 

corresponds to the charge pattern of the system (Fig. 1) 

having hierarchical structure. 

 

 
Fig. 3. Cayley tree [17] 

 

Let’s trace structural transformations in the system, 

modeling structurization dynamics by fractal Brownian 

process [17]. 

For the description of the phenomena having fractal 

characteristic [20] the generalized Brownian motion 

which, by definition, is written in the form of fractional 

integral was added to the work: 
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– gamma function; H – the Hurst 

parameter. 

Impulse response function is equal to: 
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Using impulse response function of the power kind (4) 

in the equation (3) leads to the strong correlated 

dependence of the process )(tBH  on its previous values, 

and also points at self-similar character of the fractal 

Brownian motion. On the basis of the 

correlation )()( 2/1    thbbbth H
, and on the 

dependence for the Wiener process 

)()( 2/1  dBbbdB  from the equation (3) we receive 

)()( tBbbtB H

H

H  :  

)()( btBbtB H

H
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 ,                   (5) 

that confirms self-similar character of structurization 

if we model it with the fractal Brownian motion. 

For the increments of this process expected value and 

dispersion on the basis of (3) taking into account 

properties of the Wiener process: 
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are correspondingly equal: 
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Scaled correlation function of stationary increments of 

the fractal Brownian motion for two adjoining 

nonoverlapping time intervals ),( 10 tt and ),( 21 tt will 

be defined: 

 

;
})]()({[

)]}()()][()({[
)(

2

01

1201

tBtBM

tBtBtBtBM
tr

HH

HHHH

H





 

or at 0)( 0 tBH  

.
)}({

)}({)}2()({
)(

2

2

tBM

tBMtBtBM
tr

H

HHH

H


    (8) 

 

Adding and subtracting in each of the multipliers of 

the first term of sum (8) )2( tB and )(tB  

correspondingly, after multiplication and reduction of 

similar terms we receive: 
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Taking into account that the correlation in square 

brackets in the expression (9) on the basis of (8) is equal 

to )(trH , and also considering (7), we have finally: 

12)( 12  H

H tr .                  (10) 

If we multiply (10) by
H

H ttBM 22 ~)}({ , we will get 

the correlation function of increments on the intervals 

),0( t and )2,( tt of the fractal Brownian motion [18]: 

HH

H ttK 212

2 )12()(  
. 

This expression points at the strong correlation 

dependence of increments increasing with growth of t . 

The correlation function for the fractal Brownian 

motion will be written down in the shape of: 
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Correlation coefficient for stationary increments of the 

fractal Brownian motion on the intervals ),( Ttt nn  and 

),( Ttt knkn  the defined durationT spread over the 

time kT where k - a shift parameter, can be written 

down as the expression: 
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where: 1k that corresponds to correlation dependence 

for the increments process on the adjoining time intervals, 

and also considering a correlation 12  H , we 

receive (10). At big values of k the correlation coefficient 

is approximated by the expression: 
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It follows from this expression that the more 

parameter is, the more extended dependence 

),( TkrH has. 

This conclusion can be used for the characteristic of 

behavior of the temporal sequence of parameter changes, 

defining concentration of the reagents in the studied 

polymeric system through the statistics having self-

similarity characteristics of the fractal Brownian motion. 

If we define increments of the fractal Brownian 

motion on the intervals ),( Ttt nn  as nX , the 

aggregative clustering process created as sequence of the 

weighted averages from increments on m  identical 

nonoverlapping intervals with the durationT , is described 

by a correlation [20]: 
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In the aggregative process of increments, when 

m the coefficient of correlation ),( TkrH keeps 

the structure and practically doesn't depend on the 

parameter m , and dispersion changes according to the 

correlation: 
1)( ~)( mtD m

,                    (13) 

This statistics – dispersion of increments is the 

convenient characteristic during processing of 

experimental data for the analysis of the considered 

process. 

The studied process will be presented as a model of 

casual process with increments of a random variable [17]. 

If ),( Txpx is the conditional probability that an 

event x happens, if the event T happened and probability 

density of this event is ),( tTpT so the unconditional 

probability to find the random variable in x  is equal to: 
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Our aim is to receive a function for unconditional 

distribution of random walks radius vector 
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at 

conditional probability of Gaussian 

distribution ),( Txpx , i.e. to find the 

function ),( tTpT .The solution of this problem is 

formulated in the generalized two-parameter Levi 

functions [17]: 
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We will look for distribution of a random variable in 

the following class of functions [17]: 
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if radius vector r incidentally moves from the position 

l to the position N after N -jump. 

The same scalar )0( will be added according to the 

equation [17]: 
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By convention probability density of distribution is 

equal to: 
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where: )(x is delta function, and )( 1 NN rrP  is 

probability to find a particle after the first jump in the 

point 1r , after the second – in a point 2r , etc. If Fourier 

transform of delta function is added [17], then: 
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Let any jump can be made in any point of space 

equally, then 
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Now it is convenient to present probability density 

(18) in the next form: 
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and the task is resolved to finding of the only integral: 
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where:  – an exponent in the law (16), G – number of 

spatial measurements, d – the result of integration in 

corners. 

The integral (20) converges, if 20 


G
, i.e. in the 

window of definition of Levi distribution [16]. The 
integral to the right (20) is calculated by parts: 
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where: B – a constant, )(x – Euler gamma function. 

In (19) all integrals are identical therefore it is 

possible to go to an exponential limit, when N : 
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According to [18], considering that jumps happen 

evenly, i.e. with constant speed TN  , we add 

designations: 
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As a result from (19) we have an expression for 

density function of a random variable )0(  (16) in the 

form of time-dependent Levi distribution: 
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The Levi law of motion distribution is characterized 
by slowly descending asymptotics, i.e. by a significant 
amount of big fluctuations [21, 22]. 

One-dimensional discrete analog of Levi jumps on the 
fractal lattice simulated by a spanning set of Malderbrota-
Given fractal used in the percolation theory will be 
considered [19]. Probability of the particle to appear on 

the l point after n steps )(lPn  and probability 

distribution of jumps on lengths )(lf are designated: 
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As a function )(lf  we will choose the following one: 
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where: mn, – Kronecker symbol. Then structural 

function for such random walk is equal to:  
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It is also noticed that structural function  satisfies to 

the functional equation: 
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particle diffusion leaves the point so the sum of 
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an expression for probabilities of the motion on and 
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 .))(sin()cos(

);(

0








 



n

nnn WWkbikba

Ek

  

(24) 
As well as during usual diffusion, the second term of 

sum at the small 0k has drift speed: 
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where: )(yth – a hyperbolic tangent. For calculation 

of speed we will use the Poisson equation: 
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where: the exponent bmiDm ln/2  . 

It is easy to see that the second term of sum in 
brackets is small in comparison with the first in the 

parameter . Thus, we receive nonlinear dependence: 
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DRV 1~ which shows what events we should expect from 

the system. 
Projecting the given analysis technique on identification 

of useful information in a signal with the high level and noise 
density it is possible to increase considerably the quality of 
technical objects diagnostics. It opens prospects for 
identification of dangerous object conditions at the stage 
preceding its destruction. 

CONCLUSIONS 

1. As dynamics of the difficult system evolving in time is 
observed usually as a dynamic series of some characteristic 
which creates a database for the analysis and identification of 
dynamic behavior of the system by means of the methods of 
nonlinear dynamics, so such analysis will allow to find useful 
information in the signals from the sensor with the high level 
and noise density during technical objects diagnostics. 

2. To trace the state function of the studied system 
according to the change of the concentration of reagents 
which are directly connected with this function. Identification 
of the area of initial data at which choice it is possible to 
expect self-organization with formation of the periodic space-
time modes, represents rather a complex problem as its 
decision demands carrying out extensive studies. At this stage 
of the researches we were limited to study of the self-
oscillating modes especially as these modes define, 
apparently, the characteristics of the structural organization of 
initially disordered polymeric medium. 

3. We got the evidence of essential possibility of mode 
realization of the deterministic chaos in the studied process 
when fluctuations of the parameter connected with 
concentrations of reagents in the studied medium form fractal 
structures. 
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ПРИМЕНЕНИЕ МЕТОДОВ ТЕОРИИ ХАОСА И 

НЕЛИНЕЙНОЙ ДИНАМИКИ К ДИАГНОСТИКЕ 
ТЕХНИЧЕСКИХ ОБЪЕКТОВ 

 
Д. Маргенко, А. Жидков 

 
Аннотация. В статье доказывается возможность 

использования методов теории хаоса и нелинейной 
динамики, чтобы отделить полезный сигнал при 
постановке диагноза диагностики технических объектов 
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