PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 4 |

Tytuł artykułu

Maximal oxygen uptake is associated with the snp 13470 G>C polymorphism of the mitochondrial NADH dehydrogenase subunit 5 gene (mtND5) in Caucasians from Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Introduction. Physical performance displays a great interindividual variance in both general population and among well-rained athletes. Genetic factor has an important contribution in this variance. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of mitochondrial NADH dehydrogenase subunit 5 gene (mtND5) in Caucasians from Poland. Material and Methods. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fi tness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximal oxygen uptake (VO₂max) and SNP 13470 G>C polymorphism of the mitochondrial NADH dehydrogenase subunit 5 gene (mtND5) was determined by restriction fragments length polymorphism (PCR-RFLP). Results. We have found that maximal oxygen uptake is associated with BamHI+/+ homoplasmic variant of the mtND5 gene in Caucasians from Poland. We have also observed positive infl uence of BamHI+ allele on level of maximal oxygen uptake (VO₂max).

Wydawca

-

Rocznik

Tom

20

Numer

4

Opis fizyczny

p.189-196,fig.,ref.

Twórcy

autor
  • Department of Physiology, University School of Physical Education, Poznan, Poland
autor
  • Department of Physiology, University School of Physical Education, Poznan, Poland
autor
  • Department of Physiology, University School of Physical Education, Poznan, Poland
  • Computer Laboratory, Faculty of Animal Breeding and Biology, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • 1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature. 1981; 290: 457-465.
  • 2. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981; 290: 470-474.
  • 3. Attardi G, Chomyn A, Montoya J, Ojala D. Identification and mapping of human mitochondrial genes. Cytogenet Cell Genet. 1982; 32: 85-98.
  • 4. Ragan CI. Structure of NADH-ubiquinone reductase (complex I). Curr Top Bioenerg. 1987; 15: 1.
  • 5. Dionne FT, Turcotte L, Thibault MC, Boulay MR, Skinner JS, Bouchard C. Mitochondrial DNA sequence polymorphism, VO2max, and response to endurance training. Med Sci Sports Exerc. 1991; 23: 177-185.
  • 6. Rivera MA, Dionne FT, Wolfarth B, Chagnon M, Simoneau JA, Perusse L, Boulay MR, Gagnon J, Song TMK, Keul J, Bouchard C. Muscle-specific creatine kinase gene polymorphism in elite endurance athletes and sedentary controls. Med Sci Sports Exerc. 1997; 29: 1444-1447.
  • 7. Brearley MB, Zhou S. Mitochondrial DNA and maximum oxygen consumption. Sport Science. 2001; 5(2).
  • 8. Chen Q, Ma LH, Chen JQ. Analysis on genetic polymorphism of mtDNA in endurance athletes and sedentary subjects. Chin J Appl Physiol. 2000; 16: 327¬330.
  • 9. Ma LH, Chen Q, Zhang W, Chen JQ. The mitochondrial DNA D-Loop polymorphism and VO2max in Chinese junior athletes. Chin J Sport Med. 2000; 19: 349-350.
  • 10. Rivera MA, Wolfarth B, Dionne FT, Chagnon M, Simoneau JA, Boulay MR, Song TMK, Perusse L, Gagnon J, Leon AS, Rao DC, Skinner JS, Wilmore JH, Keul J, Bouchard C. Three mitochondrial DNA restriction polymorphisms in elite endurance athletes and sedentary controls. Med Sci Sports Exerc. 1998; 30: 687-690.
  • 11. Bellotti P, Benzi G, Dal Monte A, Donati A, Matteucci E, Vittorio C. Classificazione degli Sport e determinazione del mezzi di allenamento. Atleticastudi. 1978; 3/4.
  • 12. Maciejewska-Karłowska A. Polymorphisms in the Peroxisome Proliferator-Activated Receptor genes: relevance for athletic performance. Trends Sport Sci. 2013; 1: 5-15.
  • 13. Gronek P, Holdys J. Genes and physical fitness. Trends Sport Sci. 2013; 1: 16-29.
  • 14. Bouchard C, Perusse L, Chagnon YC, Warden C, Ricquier D. Linkage between markers in the vicinity of the uncoupling protein 2 gene and resting metabolic rate in humans. Hum Molec Genet. 1997; 6: 1887-1889.
  • 15. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc. 2009; 41: 35¬73.
  • 16. Holdys J, Kryściak J, Stanisławski D, Gronek P. ACE I/D gene polymorhism in athletes of various sports disciplines. Hum Movement. 2011a; 12: 223-231.
  • 17. Holdys J, Kryściak J, Stanisławski D, Gronek P. Polymorphism of the ACTN3 Gene in Individuals Practising Different Sports Disciplines. Biol Sport. 2011b; 28: 101-106.
  • 18. Taivassalo T, Haller RG. Implications of exercise training in mtDNA defects-use it or lose it? Biochim Biophys Acta. 2004; 1659: 221-231.
  • 19. Murakami H, Ota A, Simojo H, Okada M, Ajisaka R, Kuno S. Polymorphism in control region of mtDNA relates to individual differences in endurance capacity or trainability. Japan J Phys. 2002; 52: 247-256.
  • 20. Hagberg JM, Moore GE, Ferrell RE. Specific genetic markers of endurance performance and VO2max. Exerc Sport Sci Rev. 2001; 29: 15-19.
  • 21. Raule N, Sevini F, Santoro A, Altilia S, Franceschi C. Association studies on human mitochondrial DNA: methodological aspects and results in the most common age-related diseases. Mitochondrion. 2007; 7: 29-38.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ed0eee0d-0b64-48ca-9f9d-33d39f66296b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.