PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Scenario analysis of carbon emissions of China’s power industry based on the improved particle swarm optimization-support vector machine model

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The power industry, as the primary source of carbon emissions across China, should take more responsibility to effectively reduce carbon emissions. Affected by various factors, carbon emissions from the power industry show non-linear and non-stationary characteristics. To forecast carbon emissions precisely and efficiently, this paper proposes an improved particle swarm optimization (IPSO)-support vector machine (SVM) model combined with scenario analysis. Grey relativity analysis (GRA) is applied to identify and construe the major influencing factors. Based on factors including economic growth, urbanization rate, total electricity consumption, net coal consumption rate, and thermal power installed capacity, 48 kinds of development scenarios are set during 2016-20. Compared with other methods, the effectiveness of IPSOSVM has been proved to have the best forecasting performance. The prediction results indicate that carbon emissions from China’s power industry will be 128691.59-149137.32kt in 2020. And the influencing level of each factor differs a lot in different development scenarios. Furthermore, there exists a certain decoupling between carbon emissions of China’s power industry and economic growth.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.439-449,fig.,ref.

Twórcy

autor
  • Department of Economics and Management, North China Electric Power University, 689 Huadian Road, Baoding 071000, China
autor
  • Department of Economics and Management, North China Electric Power University, 689 Huadian Road, Baoding 071000, China
autor
  • Department of Economics and Management, North China Electric Power University, 689 Huadian Road, Baoding 071000, China

Bibliografia

  • 1. WHITE C.M., STRAZISAR B.R., GRANITE E.J., HOFFMAN J.S., PENNLINE H.W. Separation and Capture of CO₂ from Large Stationary Sources and Sequestration in Geological Formations-Coalbeds and Deep Saline Aquifers. Journal of the Air & Waste Management Association, 53, 645, 2003.
  • 2. IEA, 2007a. World Energy Outlook 2007: China and India Insights. International Energy Agency: Paris, 2007.
  • 3. BIROL F. World Energy Outlook 2013. International Energy Agency: Paris, 2013.
  • 4. YANSHA Y., GUNFEN H., WEIBIN L., JIANG W. Research on Several Problems of Power Development in the 12th Five-Year Plan, China Electric Power Press: Beijing, China, 2010.
  • 5. SCHMALESEE R., STOKER T.M., JUDSON R.A. Word carbon dioxide emission: 1950-2050. Review of Economics & Statistics, 80, 15, 1998.
  • 6. AROURI M.E.H., YOUSSEF A.B., HENNI H.M., RAULT C. Energy consumption, economic growth and CO₂ emission in Middle East and North African countries. Energy Policy, 45, 342, 2012.
  • 7. SABOORI B., SULAIMAN J., MOHD S. Economic growth and CO₂ emissions in Malaysia: A cointegration analysis of the environment Kuznets curve. Energy Policy, 51 (4), 184, 2012.
  • 8. GALEOTTI M., LANZA A., PAULI F. Reassessing the environmental Kuznets curve for CO₂ emissions: a robustness exercise. Ecological Economics, 57 (1), 152, 2006.
  • 9. WANG S.S., ZHOU D.Q., ZHOU P., WANG Q.W. CO₂ emissions, energy consumption and economic growth in China: a panel data analysis. Energy Policy, 39 (9), 4870, 2011.
  • 10. WU H., GU S.Z., GUAN X.Y., LU S.S. The relationship between the carbon emissions of fossil energy consumption and the economic growth in China. Journal of Cleaner Production, 3, 381, 2013.
  • 11. MI Z.F., PAN S.Y., YU H., WEI Y.M. Potential impacts of industrial structure onenergy consumption and CO₂ emission: a case study of Beijing. Journal of Cleaner Production, 103, 455, 2015.
  • 12. DALY H.E., SCOTT K., STRACHAN N., BARRETT J. The indirect CO₂ emission implications of energy system pathways: linking IO and times models for the UK. Environmental Science Technology, 49 (17), 10701, 2015.
  • 13. SHAHBAZ M., SBIA R., HAMDI H., OZTURK I. Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates. Ecological Indicators, 45 (5), 622, 2014.
  • 14. FAN Y., LIU L.C., WU G., WEI Y.M. Analyzing impact factors of CO₂ emissions using the STIRPAT model. Environmental Impact Assessment Review, 26 (4), 377, 2006.
  • 15. SU B., ANG B.W. Multi-region comparisons of emission performance: the structural decomposition analysis approach. Ecological Indicators, 67, 78, 2016.
  • 16. FARHANI S., CHAIBI A., RAULT C. CO₂ emissions, output, energy consumption, and trade in Tunisia. Economic Modelling, 38, 426, 2014.
  • 17. AL-MULALI U., SHEAU-TING L. Econometric analysis of trade, exports, imports, energy consumption and CO₂ emission in six regions. Renewable & Sustainable Energy Reviews, 33 (2), 484, 2014.
  • 18. WANG Z., DANG Y.G. Research on carbon emission prediction in Jiangsu Province based on an improved GM (1, 1) model. IEEE International Conference on Gray System, 93, 2013.
  • 19. ZHENGXIN W., DEJUN Y. Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. Journal of Cleaner Production, 142, 600, 2017.
  • 20. DU Q., CHEN Q., YANG R. Forecast carbon emissions of provinces in China based on logistic model. Resources Environment in the Yangtze Basin, 122, 143, 2013.
  • 21. SUN W., LIU M. Prediction and analysis of the three major industries and residential consumption CO₂ emissions based on least squares support vector machine in China. Journal of Cleaner Production, 122, 144, 2016.
  • 22. LIU X., MAO G., REN J., LI R.Y.M., GUO J., Zhang, L. How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO₂ emissions using the system dynamics model. Journal of Cleaner Production, 103, 401, 2015.
  • 23. GAMBHIR A., SCHULZ N., NAPP T., TONG D., MUNUERA L. A hybrid modeling approach to develop scenarios for China's carbon dioxide emissions to 2050. Energy Policy, 59 (59), 614, 2013.
  • 24. ZHANG Y., WANG C., WANG K., CHEN J. CO₂ emission scenario analysis for China’s electricity sector based on LEAP software. Journal of Tsinghua University, 47(3), 365, 2007.
  • 25. YUAN J., NA C., HU Z., LI P. Energy Conservation and Emissions Reduction in China’s Power Sector: Alternative Scenarios Up to 2020. Energies, 9 (4), 266, 2016.
  • 26. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
  • 27. LIU S.F., CAI H., YANG Y.J., YING C. Research progress of grey relational analysis model. Systems Engineering & Theory Practice, 33, 2041, 2013.
  • 28. CORTES C., VAPNIK V. Support-vector networks. Machine Learning, 20 (3), 273, 1995.
  • 29. CHANG C.C., LIN C.J. LIBSVM: A library for support vector machines. ACM Trans. Acm Transactions on Intelligent Systems & Technology, 2 (3), 27, 2011.
  • 30. SMOLA A., VAPNIK V. Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155, 1977.
  • 31. VAPNIK V.N., GOLOWICH S.E., SMOLA A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Advances in Neural Information Processing Systems, 281, 1996.
  • 32. POLI R., KENNEDY J., BLACKWELL T. Particle swarm optimization. Swarm Intelligence, 1 (1), 33, 2007.
  • 33. JIN G., FAN Z.W., WANG C., GUO W.P., LAI X.M., CHEN M.Z. A minimum-of-maximum relative error support vector machine for simultaneous reverse prediction of concrete components. Computer &Structures, 172 (C), 59, 2016.
  • 34. LIANG J.J., QIN A.K., SUGANTHAN P.N., BASKAR S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10 (3), 281, 2006.
  • 35. JORDEHI A.R. Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimization problems. Applied Soft Computing, 26 (26), 401, 2015.
  • 36. SUN W., XU Y. Using a back propagation neural network based on improved particle swarm optimization to study the influential factors of carbon dioxide emissions in Hebei Province, China. Journal of Cleaner Production, 112, 1282, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ecd42910-ed43-4d96-a762-c4e0f67b0c7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.