PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 509 |

Tytuł artykułu

Pre-sowing seed treatments for inducing alt tolerance in wheat

Treść / Zawartość

Warianty tytułu

PL
Przedsiewne traktowanie nasion pszenicy w celu indukcji tolerancji na stres solny

Języki publikacji

EN

Abstrakty

EN
The influence of pre-sowing seed treatments on germination, seedling growth, ion accumulation and plant antioxidant system in spring wheat (Triticum aestivum L.) cultivar MH-97 was examined under control and saline conditions. Albeit, all pre-sowing seed treatments were effective in improving seedling fresh and dry weight under saline conditions, the effect of hormonal priming with kinetin was very pronounced particularly in improving seedling vigor. The plants raised from seeds primed with kinetin have maximum root and shoot lengths under saline conditions while pre-sowing chilling treatment increased shoot length maximally whereas halopriming increased root length maximally under non-saline conditions. The Na⁺ uptake was decreased while K⁺ uptake was increased in plants due to hormonal priming with kinetin and hydropriming under stress conditions. Except halopriming, all seed treatments significantly increased leaf protein contents under non-saline conditions, however decreased under saline conditions. Halopriming resulted in a significant increase in protein concentration. Catalase (CAT) activity was significantly increased under salinity stress, however, hormonal priming and halopriming treatments maximally increased CAT activity. All the seed treatments were effective in increasing superoxide dismutase (SOD) level but hormonal priming with kinetin maximally increased its activity under stress conditions. Although all pre-sowing seed treatments were effective in alleviating the adverse effect of the salt stress on wheat plants, their effects on altering the concentration of different ions, seedling growth and plant antioxidant system were different in the wheat plants.
PL
Wpływ przedsiewnego traktowania nasion na kiełkowanie, wzrost siewek, akumulację jonów oraz system antyoksydacyjny roślin pszenicy jarej (Triticum aestivum L.) odmiany MH-97 był badany w warunkach normalnych i w warunkach stresu solnego. Chociaż wszystkie przedsiewne traktowania nasion skutecznie poprawiały ilość świeżej i suchej masy siewek w warunkach stresu solnego, wpływ traktowania hormonami (kinetyną) był szczególnie wyraźny w poprawie żywotności siewek. Rośliny otrzymane z nasion traktowanych kinetyną miały największą długość korzenia i pędu w warunkach stresu solnego, podczas gdy przedsiewne chłodzenie nasion najbardziej stymulowało wzrost pędu, a traktowanie nasion roztworem soli (halopriming) najbardziej stymulowało wzrost korzenia w warunkach kontrolnych. Pobieranie Na⁺ było mniejsze, natomiast pobieranie K⁺ większe u roślin traktowanych kinetyną lub wodą w warunkach stresu. Za wyjątkiem osmokondycjonowania, wszystkie metody traktowania nasion znacznie zwiększały zawartość białka w liściach w warunkach bez stresu solnego, a zmniejszały w warunkach stresu solnego. Osmokondycjonowanie powodowało znaczny wzrost stężenia białek. Aktywność katalazy (CAT) wzrastała w warunkach stresu solnego, jednakże traktowanie hormonami i osmokondycjonowanie maksymalnie zwiększało aktywność CAT. Wszystkie metody traktowania nasion były skuteczne w podnoszeniu poziomu dysmutazy ponadtlenkowej (SOD) ale traktowanie kinetyną maksymalnie zwiększało jej aktywność w warunkach stresu. Chociaż wszystkie metody przedsiewnego traktowania nasion były skuteczne w łagodzeniu niekorzystnego wpływu stresu solnego na rośliny pszenicy, ich wpływ na zmianę stężenia różnych jonów, wzrostu siewek i systemu antyoksydacyjnego roślin różnił się w różnych roślinach pszenicy.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

509

Opis fizyczny

p.245-259,fig.,ref.

Twórcy

autor
  • Department of Crop Physiology, University of Agriculture, Faisalabad-38040, Pakistan
autor
  • Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan
autor
  • Nuclear Institute for Agriculture and Biology, Jhang Road Faisalab, Pakistan
autor
  • Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan

Bibliografia

  • Afzal I., Basra S.M.A., Ahmad N., Cheema M.A., Warraich E.A., Khaliq A. 2002. Effect of priming and growth regulator treatment on emergence and seedling growth of hybrid maize (Zea mays). Int. J. Agric. Biol. 4: 303-306.
  • Afzal A., Basra S.M.A., Khokhar N.M. 2005a. Pre-sowing seed treatments for alleviation of salinity stress in wheat (Triticum aestivum L.). J. Food Agri. Environ. 3 (accepted).
  • Afzal A., Basra S.M.A., Ahmad N., Farooq M. 2005b. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Serie Biologia 17: 95-108.
  • Afzal I., Aslam N., Mahood F., Hussain A., Irfan S. 2004. Enhancement of germination and emergence of canola seeds by different priming techniques. Caderno de Pesquisa Serie Biologia 16: 19-33.
  • Angrish R., Kumar B., Datta K.S. 2001. Effect of gibberellic acid and kinetin on nitrogen content and nitrate reductase activity in wheat under saline conditions. Indian J. Plant Physiol. 6: 172-177.
  • Ashraf M. 1994. Genetic variation for salinity tolerance in spring wheat. Hereditas 120: 99-104.
  • Ashraf M., Akhtar N., Tahira F., Nasim F. 1999. Effect of NaCl pretreatment for improving seed quality cereals. Seed Sci. Technol. 20: 435-440.
  • Ashraf M., Khanum A. 1997. Relationship between ion accumulation and growth in two spring wheallines differing in salt tolerance at different growth stages. J. Agron. Crop. Sci. 178: 39-51.
  • Association of Official Seed Analysis (AOSA) 1990. Rules for testing seeds. J. Seed Technol. 12: 1-112.
  • Basra S.M.A. 2004. Induction of salt tolerance in wheat by pre-sowing seed treatments. 3rd International Conference under the title „Biological Interactions”. Environmental Research Centre, Sinai, Egypt, 3-5th of September.
  • Basra S.M.A., Afzal I., Rashid R.A., Hameed A. 2005a. Inducing salt tolerance in wheat by seed vigor enhancement techniques. Int. J. Biol. Biot. 2: 173-179.
  • Basra S.M.A., Anwar S., Afzal I., Shafique M., Haq A., Majeed K. 2005b. Effect of different seed invigoration techniques on wheat (Triticum aestivum L.) seeds sown under saline and non-saline conditions. J. Seed Technol. (submitted).
  • Beers R.F.Jr I., Sizer W. 1952. A spectrophotometeric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133.
  • Bewley J.D., Black M. 1982. Physiology and biochemistiy of seeds in relation to germination. Vol. 2. Viability, dormancy, and environmental control. Springer- Verlag, Berlin.
  • Blokhina O., Virolainen E., Fagerstedt K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Bradford K.J. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort. Sci. 21: 1105-1112.
  • Bray C.M., Davision P.A., Ashraf M., Taylor R.M. 1989. Biochemical changes during osmopriming of leak seeds. Ann. Bot. 36: 185-193.
  • Chipa B.R., Lal P. 1993. Ionic ratios as the basis of salt tolerance in wheat. Agrochimica 37: 63-67.
  • Darra B.L., Seth S.P., Singh H., Mendiratta R.S. 1973. Effect of hormone-directed presoaking on emergence and growth of osmotically stressed wheat (Triticum aestivum L.). Agron. J. 65: 292-295.
  • Dixit V., Pandey V., Shyam R. 2001. Differential antioxidative response to cadmium in roots and leaves of pea. J. Exp. Bot. 52: 1101-1109.
  • Gadallah M.A.A. 1999. Effects of kinetin on growth, grain yield and some mineral elements in weheat plants growing under excess salinity and oxygen deficiency. Plant Growth Regulation 27: 63-71.
  • Gechev T., Gadjev I., Breusegem F.V., Inze D., Dukiandjiev S., Toneva V., Minkov I. 2002. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol. Life Sci. 59: 708-714.
  • Greenway H., Munns R. 1980. Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant. Physiol. 31: 149-190.
  • Gueta-Dahan Y., Yaniv Z., Zilikas B.A., Benhayyim G. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Physiol. Plant. 104: 169-174.
  • Hampton J.G., Tekorny D.M. 1995. Handbook of ISTA vigour test methods. 3rd edition, Zurich, Switzerland: 10.
  • Harris D., Joshi A., Khan P.A, Gothkar P., Sodhi P.S. 1999. On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Exp. Agric. 35: 15-29.
  • Hernandez J.A., Ferrer M.A., Jimenez A., Ros-Barcelo A., Sevilla F. 2001. Antioxidant systems and O₂/H₂O₂ production in the apoplant of Pisum sativum L. leaves: its relation with NaCl induced necrotic lesions in minor veins. Plant Physiol. 127: 817-831.
  • Hocart C.H., Lethem D.S., Parker C.W. 1990. Metabolism and translocation of exogenous zeatin riboside in germinating seeds and seedlings of Zea mays. J. Exp. Bot. 41: 1517-1524.
  • Iqbal M., Ashraf M. 2005. Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul. 46: 19-30.
  • Jeng T.L., Sung J.M. 1994. Hydration effect on lipid peroxidation and peroxide scavenging enzyme activity of artificially aged peanut seeds. Seed Sci. Technol. 22: 531-539.
  • Kalyani S., Saxena S. 2001. Priming seeds for improved viability and storability in Raphanus salivas cv. Chinese Pink. Indian J. Plant Physiol. 6: 271-274.
  • Kamboh M.A., Oki Y., Adachi T. 2000. Effect of pre-sowing seed treatments on germination and early seedling growth of wheat varieties under saline conditions. Soil Sci. Plant Nutr. 46: 249-255.
  • Kayani S.A., Rahman M. 1988. Effect of NaCl salinity on shoot growth, stomata size and its distribution in Zea mays L. Pak. J. Bot. 20: 75-81.
  • Khan M.A., Ungar A.I., Showlters A.M. 2000. Effect of salinity on growth, water relation and ion accumulation of the Sub Tropical Perennial Halophytes, Atriplex griffithii var. Stockssii. Ann. Bot. 85: 225-232.
  • Khatkar D., Kuhad M.S. 2000. Stage sensitivity of wheat cultivars to short term salinity stress. Indian J. Plant Physiol. 5: 26-31.
  • Lacan D., Durand M. 1996. Na⁺-K⁺ exchange at the xylem/symplast boundry. Its significance in the salt sensitivity of soyabean. Plant Physiol. 110: 705-711.
  • Menezes-Benavente L., Kernodle S.P., Margis-Pinheiro M., Scandalios J.G. 2004. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Report. 9: 29-36.
  • Poustini K., Ciocemardeh A. 2001. K⁺/Na⁺ ratio and ion selectivity in response to salt stress in wheat. Iranian J. Agric. Sci. 32: 525-532.
  • Priestley D.A. 1986. Seed Aging. Implications for seed storage and persistence in the soil. Ithaca, New York, Cornell University Press.
  • Rahnama H., Ebrahimzadeh H. 2005. The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol. Plant. 49: 93-97.
  • Ruan S., Xue Q., Tylkowska T. 2002. Effects of seed priming on germination and health of rice (Oryza sativa L.) seeds. Seed Sci. Technol. 30: 451-458.
  • Saha R., Mandal A.K., Basu R.N. 1990. Physiology of invigoration treatments in soybean (Glycine max L.). Seed Sci. Technol. 18: 269-276.
  • Shalata A., Tal M. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 104: 169-174.
  • Shannon M.C., Grieve C.M. 1999. Tolerance of vegetable crops to salinity. Sci. Hort. 78: 5-38.
  • Smith P.T, Cobb B.G. 1991. Physiological and enzymatic activity of pepper seeds (Capsicum annuum) during priming. Physiol. Plant. 82: 433-439.
  • Srinivasan K., Saxena S. 2001. Priming seeds for improved viability nd storability in Raphanus sativus cv. Chinese Pink. Indian J. Plant Physiol. 6: 271-274.
  • Tsugane K., Kobayashi K., Niwa Y., Ohba Y., Wada K. 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. The Plant Cell 11: 1195-1206.
  • Winter E. 1982. Salt tolerance of Trifolium alexandrinum. LII. Ion balance in relation to its salt tolerance. Aust. J. Plant. Physiol. 9: 227-237.
  • Wyn Jones R.G., Gorham J., McDonell E. 1984. Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae, in: Salinity Tolerance in Plants. Strategies for crop improvement. Staples R.C., Toennissen G.H. (Eds). John Wiley & Sons, New York: 189-203.
  • Yang T., Pooviath B.W. 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/camodulin. PNAS 99: 4097-4102.
  • Zeng L., Shannon M.C. 2000. Effect of salinity on grain yield and yield components of rice at different seedling. Agron. J. 921: 418-422.
  • Zhang S., Gao J., Song J., Zhang S.G, Gao J.Y., Song J.Z. 1999. Effects of salicylic acid and aspirin on wheat seed germination under salt stress. Plant Physiology Communications 35: 29-32.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eca3657f-d874-44a7-ad5a-65bdd04ebe5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.