PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 08 |

Tytuł artykułu

Biomass and bioenergy partitioning of sugarcane plants under water deficit

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study assessed the photosynthesis, biomass, and phytoenergy production in sugarcane plants subjected to water deficit during the initial stages of development. We hypothesize that the limitations imposed by water deficit on photosynthesis proportionally affect carbon balance, growth, and partitioning of phytoenergy in sugarcane. This study was carried out during 5 months in a growth chamber and water deficit was induced by maintaining soil moisture at 20 % of the maximum water holding capacity (WHC). As control, one group of plants was maintained at 100 % WHC. Water deficit reduced the carboxylation of Rubisco and PEPCase significantly, which were the main limiting factors for photosynthesis. As consequence, the daily leaf carbon balance was significantly reduced by drought. The total accumulated dry matter in well-watered plants was 3.6 times higher than in drought-stressed ones. Water deficit reduced the energy accumulated in sugarcane plants by approximately threefold. Regardless of water regime, a large fraction of the converted energy was not found in stalks. Under water deficit, less than 20 % of the energy is stored in stalks. Since only a tiny fraction of solar energy is used for the production of first generation ethanol, our study reinforces the importance of evaluating strategies to optimize the use of sugarcane, for example, harvesting plant organs other than stalks.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

08

Opis fizyczny

fig.,ref.

Twórcy

autor
  • Laboratorio de Inteligencia em Plantas e Ecofisiologia “Ulrich Luttge”, Universidade do Oeste Paulista-LIPEUL/UNOESTE, Rodovia Raposo Tavares, km 572, Presidente Prudente, SP, CEP 19067-175, Brazil
  • Laboratorio de Inteligencia em Plantas e Ecofisiologia “Ulrich Luttge”, Universidade do Oeste Paulista-LIPEUL/UNOESTE, Rodovia Raposo Tavares, km 572, Presidente Prudente, SP, CEP 19067-175, Brazil
autor
  • Laboratorio de Inteligencia em Plantas e Ecofisiologia “Ulrich Luttge”, Universidade do Oeste Paulista-LIPEUL/UNOESTE, Rodovia Raposo Tavares, km 572, Presidente Prudente, SP, CEP 19067-175, Brazil
autor
  • Laboratorio de Inteligencia em Plantas e Ecofisiologia “Ulrich Luttge”, Universidade do Oeste Paulista-LIPEUL/UNOESTE, Rodovia Raposo Tavares, km 572, Presidente Prudente, SP, CEP 19067-175, Brazil
autor
  • Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
autor
  • Laboratorio de Inteligencia em Plantas e Ecofisiologia “Ulrich Luttge”, Universidade do Oeste Paulista-LIPEUL/UNOESTE, Rodovia Raposo Tavares, km 572, Presidente Prudente, SP, CEP 19067-175, Brazil

Bibliografia

  • Amthor JS (2010) From sun light to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959
  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681
  • Carmo-Silva AE, Powers SJ, Keys AJ, Arrabac¸a MC, Parry MAJ (2008) Photorespiration in C4 grasses remains slow under drought conditions. Plant Cell and Environ 31:925–940
  • Catuchi TA, Guidorizzi FVC, Guidorizi KA, Barbosa AM, Souza GM (2012) Respostas fisiològicas de cultivares de soja á adubac¸ão potássica sob diferentes regimes hídricos. Pesq agropec Bras 47:519–527
  • Dias MOS, Cunha MP, Jesus CDF, Rocha GJM, Pradella JGC, Rossel CEV, Maciel Filho R, Bonomi A (2011) Second geration etanol in Brazil: can it compete with electricity production? Bioresour Technol 102:8964–8971
  • Du YC, Kawamitsu Y, Nose A, Hiyane S, Murayama S, Wasano K, Uchida Y (1996) Effects of water stress on carbon exchange rate and activities of photosynthetic enzyme in leaves of sugarcane (Saccharum spp.). Funct Plant Biol 23:719–726
  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Ver Plant Physiol 33:317–345
  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbo M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352
  • Ghannoum O (2009) C4 Photosynthesis and water stress. Ann Bot 103:635–644
  • Ghannoum O, Conroy JP, Driscoll SP, Paul MJ, Foyer CH, Lawlor DW (2003) Nonstomatal limitations are responsible for droughtinduced photosynthetic inhibition in four C4 Grasses. New Phytol 159:599–608
  • Gonçalves ER, Ferreira VM, Silva JV, Endres L, Barbosa TP, Duarte WG (2010) Trocas gasosas e fluorescência da clorofila a em variedades de cana-de-açúcar submetidas á deficiência hídrica. Rev Bras Eng Agríc Ambient 14:378–386
  • Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crop Res 89:107–122
  • Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crop Res 89:185–202
  • Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Jackson J (2008) Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Aust J Agr Resour Ec 59:13–26
  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579
  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 4:2393–2401
  • Machado RS, Ribeiro RV, Marchiori PER, Machado DFSP, Machado EC, Landell MGAL (2009) Respostas biométricas e fisiológicas ao deficit hídrico em cana-de-ac¸úcar em diferentes fases fenológicas. Pesq agropec Bras 44:1575–1582
  • Macrelli S, Galbe M, Wallberg O (2014) Effects of production and market factors on etanol profitability for na integrated firt and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnol Biofuels 7:1–16
  • Marques TA, Pinto LEV (2013) Energia da biomassa de cana-deaçúcar sob influência de hidrogel, cobertura vegetal e profundidade de plantio. Rev Bras Eng Agríc Ambient 17:680–685
  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:72–280
  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok-Filho JC, Pereira PFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229
  • Murchie EH, Pinto M, Horton P (2008) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552
  • Nepomuceno AL, Neumaier N, Farias JRB, Oya T (2001) Tolerância á seca em plantas: mecanismos fisiológicos e moleculares. Biotec Ciência e Desenv 23:12–18
  • Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys A (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839
  • Ridesa (2008) Rede Interuniversitária para o Desenvolvimento do Setor Sucroalcooleiro. Variedades RB. Avaivable at http://www. pmgca.dbv.cca.ufscar.br/dow/VariedadesRB_2008.pdf. Accessed Nov 2013
  • Reddy RA, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidante metabolism in higher plants. J Plant Physiol 161:1189–1202
  • Ribeiro RV, Machado RS, Machado EC, Machado DFSP, Magalhães Filho JR, Landell MGA (2013) Revealing drought-resistance and productive patterns in sugarcane genotypes by evaluating both physiological responses and stalk yield. Exp Agric 49:212–224
  • Ripley BS, Gilbert ME, Ibrahim DG, Osborne CP (2007) Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J Exp Bot 58:1351–1363
  • Saliendra NZ, Meinzer FC, Perry M, Thom M (1996) Associations between partitioning of carboxylase activity and bundles heath leakiness to CO2, carbono isotope discrimination, photosynthesis, and growth in sugarcane. J Exp Bot 47:907–914
  • Sato AM, Catuchi TA, Ribeiro RV, Souza GM (2010) The use of network analysis to uncover homeostatic responses of a droughttolerant sugarcane cultivar under severe water deficit and phosphorus supply. Acta Physiol Plant 32:1145–1151
  • Silva ALC; Costa WAJM (2012) Growth and radiation use efficiency of sugarcane under irrigated and rain-fed conditions in Sri Lanka. Sugar Tech 14:247–254
  • Silva MA, Jifon JL, Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201
  • Silva MA, Jifon JL, Silva JAG, Santos CM, Sharma V (2014) Relationships between physiological traits and productivity of sugarcane in response to water déficit. J Agr Sci 152:104–118
  • Smit MA, Singels A (2006) The response of sugarcane canopy development to water stress. Field Crop Res 98:91–97
  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–361
  • Vitti GC, Luz PHC, Altran WS (2013) Nutric¸ão e adubac¸ão. In: Santos F, Borém A (eds) Cana-de-ac¸úcar: do plantio á colheita. UFV, Viçosa
  • Von Caemmerer S (2000) Biochemical Models of Leaf Photosynthesis. Techniques in Plant Science n2. CSIRO Publishing, Collingwood
  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, SouzaGM(2010) Sugarcane for bioenergy production: na assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:1–14
  • Zhao D, Glaz B, Comstock JC (2013) Sugarcane leaf photosynthesis and growth characters during development of water-deficit stress. Crop Sci 53:1066–1075
  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eca0cc45-9197-4806-a27d-b0934d56cb49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.