PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Simulating ambient SO2 dispersion patterns and assessing their health risk in a gas refinery

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The goal of this study was to investigate the ambient concentrations and dispersion patterns of SO₂ originating from a gas refinery located in Asaluyeh, Iran, to determine the refinery’s contribution in emitting SO₂ in the region and also to assess SO₂-associated health risks in the study area. First, SO₂ emissions from the stacks and ambient SO₂ concentrations at 10 receptors in and around the refinery were measured from summer 2014 to spring 2015 using a Testo 350XL analyzer and a portable device (LSI-Lastem Babuc A). The amounts of SO₂ concentrations due to flaring were also calculated using the emission factors. Then ambient concentrations and dispersion patterns of SO₂ in the study area at 1-hr, 24-hr, and annual mean values were simulated on a scale of 10×10 km², using an AERMOD model. Moreover, a non-carcinogenic risk assessment was performed using a U.S. Environmental Protection Agency procedure. The results indicated that about 64% of ambient SO₂ concentrations were due to this refinery and the remaining concentrations were due to contributions from neighboring sources. The values of maximum simulated ambient SO₂ concentrations at average periods of 1-hr, 24-hr, and annual for the scale of 10×10 km² were 24,588, 1,366.1, and 498 μg/m³, respectively, which were higher than the U.S. EPA standard limits. There was also a potential health risk for short-term exposure (HQ = 1.4), but in long-term exposure an acceptable level of concentration (HQ = 0.28) was created.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

3

Opis fizyczny

p.1197-1206,fig.,ref.

Twórcy

autor
  • Department of Environmental Engineering, Graduate School of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Environmental Engineering, Graduate School of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Environmental Engineering, Graduate School of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Occupational Health, School of Public Health, Shahid Beheshti University of Medical Science, Tehran, Iran

Bibliografia

  • 1. Bhanarkar A.D., Goyal S.K., Sivacoumar R., Chalapati Rao C.V. Assessment of contribution of SO₂ and NO₂ from different sources in Jamshedpur region, India. Atmospheric Environment. 39, 7745, 2005.
  • 2. Al-Mutairi N., Koushki P. Potential contribution of traffic to air pollution in the state of Kuwait. Am J Environ Sci. 4 (1),13, 2009.
  • 3. Chen T.M., Gokhale J., Shofer S., Kuschner W.G. Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci. 333 (4), 249, 2007.
  • 4. U.S. EPA, http://www.epa.gov/air/urbanair/so2/index.html. 2008.
  • 5. Zou B., Wilson J.G., Zhan F.B., Zeng Y.N. Air pollution exposure assessment methods utilized in epidemiological studies. Journal of Environmental Monitoring. 11, 475, 2009.
  • 6. Abdul-Wahab S.A., Ali S., Sardar S., Irfan N. Impacts on ambient air quality due to flaring activities in one of Oman’s oilfields. Arch. Environ. Occup. H. 67 (1), 3, 2012.
  • 7. Abdul-Wahab S.A., Ali S., Sardar S., Irfan N., Al-Damkhi A. Evaluating the performance of an integrated CALPUFF-MM5 modeling system for predicting SO₂ emission from a refinery. Clean Techn Environ Policy. 13 (6), 841, 2011.
  • 8. Abdul-Wahab S.A., Sappurd A., Al-Damkhi A. Application of California puff (CALPUFF) model: a case study for Oman. Clean. Technol. Environ. 13 (1), 177, 2011.
  • 9. Curci G., Cinque G., Tuccella P., Visconti G., Verdecchia M., Iarlori M., Rizi V. Modeling air quality impact of a biomass energy power plant in a mountain valley in central Italy. Atmospheric Environment. 62, 248, 2012.
  • 10. Holnicki P., Kałuszko A., Trapp W. An urban scale application and validation of the CALPUFF model. Atmospheric Pollution Research 7 (3), 393, 2016.
  • 11. Ghannam K., El-Fadel M. A framework for emissions source apportionment in industrial areas: MM5/CALPUFF in a near-field application. J. Air Waste Manag. Assoc. 63 (2), 190, 2013.
  • 12. Ghannam K., El-Fadel M. Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach. Atmospheric Environment. 69, 156, 2013.
  • 13. Nagendra S.S., Diya M., Chithra VS, Menon J.S., Peter A.E. Characteristics of air pollutants at near and far field regions of a national highway located at an industrial complex. Transportation Research Part D: Transport and Environment. 48, 1-13, 2016.
  • 14. Ozkurt N., Sari D., Akalin N., Hilmioglu B. Evaluation of the impact of SO₂ and NO₂ emissions on the ambient air-quality in the Çan-Bayramiç region of northwest Turkey during 2007-2008. Sci. Total Environ. 456, 254, 2013.
  • 15. Sosa E.R., Bravo A.H., Cure ño G.I., Jaimes P.M., Fuentes G.G., Sanchez A.P., Torres M.V., Genesc á L.L.J. Impact on the air quality region of the Gulf of California, Mexico. In: Paper Presented at the Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, 2, 1309, 2012.
  • 16. Tian H., Qiu P., Cheng K., Gao J., Lu L., Liu K., Liu X. Current status and future trends of SO₂ and NOx pollution during the 12th FYP period in Guiyang city of China. Atmospheric Environment. 69, 273, 2013.
  • 17. Xue W., Wang J., Yang J., Lei Y., Yan L., He J., Han B. Simulation of air pollution characteristics and estimates of environmental capacity in Zibo City. Huanjing Kexue/Environ. Sci. 34 (4), 1264. , 2013.
  • 18. Li S., Xie S. Spatial distribution and source analysis of SO₂ concentration in Urumqi. International Journal of Hydrogen Energy. 2016.
  • 19. Abril G.A., Diez S.C., Pignata M.L., Britch J. Particulate matter concentrations originating from industrial and urban sources: Validation of atmospheric dispersion modeling results. Atmospheric Pollution Research. 7 (1), 180, 2016.
  • 20. Hasson A.S., Segun O.O., Steven T., Shawn A., Kenwood S., Julie S., Catalina O., Srikar M., Kennedy V., Austen S., Laxmi R.A., Lucien N. NOx emissions from a Central California dairy. Atmospheric Environment. 70, 328, 2013.
  • 21. Hadlocon L.S., Zhao L.Y., Bohrer G., Kenny W., Garrity S.R., Wang J., Wyslouzil B., Upadhyay J. Modeling of particulate matter dispersion from a poultry facility using AERMOD. J. Air & Waste Manage. Assoc. 65 (2), 206, 2015.
  • 22. Kanyanee S., Vanis , S., Kraichat T., Anchaleeporn W.L. Application of the AERMOD modeling system for environmental impact assessment of NO₂ emissions from a cement complex. J. Environ. Sci. 23 (6), 931, 2011
  • 23. Kakosimos K.E., Assael M.J., Katsarou A.S. Application and evaluation of AERMOD on the assessment of particulate matter pollution caused by industrial activities in the Greater Thessaloniki area. Environ. Technol. 32 (6), 593, 2011.
  • 24. Nicole H., Nicholas R., Heileen H., Susan H., Mark M., George W., Tong Z., Allan B., Daniel B.R., John V. Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosí, Bolivia. Atmospheric Environment. 45 (40), 7619, 2011.
  • 25. Singh D., Johnson G.T., Harbison R.D. Human health risk characterization of petroleum coke calcining facility emissions. Regulatory Toxicology and Pharmacology. 73 (3), 706, 2015.
  • 26. Zhao J., Yuan Y., Ren Y., Wang H. Environmental assessment of crop residue processing methods in rural areas of Northeast China. Renewable Energy. 84, 22, 2015.
  • 27. Andler M., Jane M., Ilias M., Neyval C. Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results. Build. Environ. 56, 8, 2012.
  • 28. Arthur R.S. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmospheric Environment. 89, 707, 2014.
  • 29. Mark R.T., Alberto S.C., Antonio V., Mark A.S. Suitability and uncertainty of two models for the simulation of ammonia dispersion from a pig farm located in an area with frequent calm conditions. Atmospheric Environment. 102, 167, 2015.
  • 30. Tartakovsky D., Broday D.M., Stern E. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ. Pollut. 179, 138, 2013.
  • 31. Tartakovsky D., Broday D.M., Stern E. Dispersion of TSP and PM10 emissions from quarries in complex terrain. Sci. Total Environ. 542 (A), 946, 2016.
  • 32. Kumar A., Patil R.S., Dikshit A.K., Islam S., Kumar R. Evaluation of control strategies for industrial air pollution sources using American Meteorological Society/Environmental Protection Agency Regulatory Model with simulated meteorology by Weather Research and Forecasting Model. Journal of Cleaner Production. 116, 110, 2016.
  • 33. Kumar A., Patil R.S., Dikshit A.K., Kumar R., Brandt J., Hertel O. Assessment of impact of unaccounted emission on ambient concentration using DEHM and AERMOD in combination with WRF. Atmospheric Environment. 142, 406, 2016.
  • 34. Mutahharah M.M., Mimi H.H., Rozainee M.T. Health risk assessment of emissions from a coal-fired power plant using AERMOD modeling. Proc. Saf. Environ. Prot. 92 (5), 476, 2014.
  • 35. Seangkiatiyuth K., Surapipith V., Tantrakarnapa K., Lothongkum A.W. Application of the AERMOD modeling system for environmental impact assessment of NO₂ emissions from a cement complex. J of Environ Sci. 23 (6), 931, 2011.
  • 36. Huertas J., Huertas M.E., Izquierdo S., Gonz ´alez E.D. Air quality impact assessment of multiple open pit coal mines in northern Colombia. Environ Manag, 93 (1), 121, 2012.
  • 37. Truong S.C., Lee M.I., Kim G., Kim D., Park J.H., Choi S.D., Cho G.H. Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model. Atmospheric Environment. 144, 146, 2016.
  • 38. Pohl H.R., Citra M., Abadin H.A., Szadkowska-Stańczyk I., Kozajda A., Ingerman L., Nguyen A., Murray H.E. Modeling emissions from CAFO poultry farms in Poland and evaluating potential risk to surrounding populations. Regulatory Toxicology and Pharmacology. 2016.
  • 39. Herrera I., De Ruyck J., Oca ña V.S., Rubio M., Martínez R.M., Núñez V. Environmental impact of decentralized power generation in Santa Clara City, Cuba: An integrated assessment based on technological and human health risk indicators. Appl Energ. 109, 24, 2013.
  • 40. Mokhtar M.M., Hassim M.H., Taib R.M. Health Risk Assessment of Emissions from a Coal-fired Power Plant Using AERMOD Modeling. Process Safety and Environment Protection. 92 (5), 476, 2014.
  • 41. Niaz Y., Zhou J., Iqbal M., Nasir A., Dong B. Ambient air quality evaluation: a comparative study in China and Pakistan. Pol. J. Environ. Stud. 24 (4), 2015.
  • 42. Geravandi S., Goudarzi G.R., Vousoghi Niri M., Mohammadi M.j., Saeidimehr S., Geravandi S. Estimation of the cardiovascular and respiratory mortality rate resulted from exposure to sulfur dioxide pollutant in ahvaz. Journal of Environmental Studies. 41 (2), 341, 2015.
  • 43. Goudarzi G., Geravandi S., Idani E., Hosseini S.A., Baneshi M.M., Yari A.R., Vosoughi M., Dobaradaran S., Shirali S., Marzooni M.B. An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013. Environmental Science and Pollution Research. 23 (21), 22001, 2016.
  • 44. Khaniabadi Y.O., Daryanoosh S.M., Hopke P.K., Ferrante M., De Marco A., Sicard P., Conti G.O., Goudarzi G., Basiri H., Mohammadi M.J.
  • Acute myocardial infarction and COPD attributed to ambient SO₂ in Iran. Environmental Research. 156, 683, 2017.
  • 45. Ma J., Yi H., Tang X., Zhang Y., Xiang Y., Pu L. Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city. Environ Sci. 25 (8), 1608, 2013.
  • 46. Zou B., Zhan F.B., Wilson J.G., Zeng Y. Performance of AERMOD at Different Time Scales, Simulation Modeling Practice and Theory. 18 (5), 612, 2010.
  • 47. Demirarslan K.O., Doğruparmak Ş.Ç. Determining Performance and Application of Steady-State Models and Lagrangian Puff Model for Environmental Assessment of CO and NOx Emissions. Pol. J. Environ. Stud. 25 (1), 83, 2016.
  • 48. Jafarigol F., Atabi F., Moattar F., Nouri J. Predicting ambient concentrations of NO₂ in a gas refinery located in South Pars Gas Complex. Int. J. Environ Sci and Tech. 13 (3), 897, 2016.
  • 49. ASTM. Standard test method for determination of nitrogen oxides, carbon monoxide, and oxygen concentrations in emissions from natural gas-fired reciprocating engines, combustion turbines, boilers, and process heaters using portable analyzers. ASTM D6522-11. West Conshohocken: ASTM International. 2011.
  • 50. ASTM. Standard practice for general ambient air analyzer procedures. ASTM D3249-95. West Conshohocken: ASTM International. 2011.
  • 51. Cimorelli A.J., Perry S.G., Venkatram A., Weil J.C., Paine R.J., Wilson R.B., Lee R.F., Peters W.D., Brode , R.W. AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization. Appl Meteorol. 44 (5),682, 2005.
  • 52. US EPA. AERMOD Implementation Guide. U. S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, North Carolina. 2015.
  • 53. Cangialosi F., Intini G., Liberti L., Notarnicola M., Stellacci P. Health risk assessment of air emissions from a municipal solid waste incineration plant - A case study. Waste Manag. 28 (5), 885, 2008.
  • 54. US EPA. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA530-D-98-001A. US EPA. Estimated Risk: Background on Risk Characterization (1998b). 2013.
  • 55. US EPA. 40 CFR Parts 50, 53, and 58 Primary National Ambient Air Quality Standard for Sulfur Dioxide; Final Rule , Federal Register 75 (119), 2010.
  • 56. Dresser A.L., Huizer R.D. CALPUFF and AERMOD Model Validation Study in the Near Field: Martins Creek Revisited. J Air Waste Manag Assoc. 6, 647, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ec39d658-c432-423e-9102-cc9b49591a3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.