PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 69 | 2 |

Tytuł artykułu

Reconstruction of late spring phenophases in Poland and their response to climate change, 1951–2014

Treść / Zawartość

Warianty tytułu

PL
Rekonstrukcja późnowiosennych faz fenologicznych w Polsce i ich odpowiedź na zmiany klimatu, 1951-2014

Języki publikacji

EN

Abstrakty

EN
Phenology is primarily seen as an indicator of the impacts of climate change. The strongest biological signal of climatic change is revealed by phenological data from the period after 1990. Unfortunately, the Polish nationwide network of phenological monitoring was terminated in 1992, and was only reactivated in 2005. Here, we attempt to reconstruct late spring phenophases of flowering of Syringa vulgaris L. and Aesculus hippocastanum L. across several sites in Poland from 1951 to 2014 using the GIS-based approach (if observations from neighboring stations were available) and multiple regression modeling with stepwise screening and bootstrap resampling. It was found that the air temperature and its indices explain over 60% of the variance, giving an accuracy of 3.0-3.4 days (mean absolute error) and correlation coefficients of 0.83 and 0.78 for lilac and horse chestnut, respectively. Altogether, both plant species showed a statistically significant advancement in the onset of flowering with an average rate of 1.7 days per decade. We also found that the final trend is the result of rapid acceleration of the increase in air temperature after the 1990s, while most of the trends for late spring were ambiguous before that period.
PL
Fenologia jest postrzegana obecnie przede wszystkim jako wskaźnik zmian klimatu. Największy biologiczny sygnał tych zmian w Europie ujawnił się po 1990 r. Niestety, kompletne fe-nologiczne serie danych w Polsce kończą się na 1992 r., natomiast kompleksowy monitoring fenologiczny o zasięgu ogólnokrajowym reaktywowano dopiero w 2005 r. Mając na uwadze powstałą lukę w seriach danych w niniejszym artykule podjęto próbę rekonstrukcji późnowiosennych faz fenologicznych kwitnienia lilaka pospolitego (Syringa vulgaris L.) i kasztanowca zwyczajnego (Aesculus hippocastanum L.) w latach 1951-2014 na przykładzie wybranych stacji. Dostępne dane fenologiczne z innych lokalizacji posłużyły do uzupełnienia serii danych obserwacyjnych w oparciu o techniki interpolacji GIS. Dla pozostałych przypadków rekonstrukcję wykonano w oparciu o utworzony model regresji wielokrotnej z próbkowaniem bo-otstrapowym oraz krokową metodą budowy modelu z kryterium Akaike (AIC). Utworzony model statystyczny bazujący na indeksach temperatury powietrza i wskaźnikach pochodnych pozwala wyjaśnić ponad 60% wariancji terminu rozpoczęcia fenofazy późnowiosennej, przy dokładności modelu wynoszącej 3.0-3.4 dnia (średni błąd bezwzględny, MAE) i korelacji 0.83 i 0.78 odpowiednio dla lilaka pospolitego i kasztanowca zwyczajnego. Przeprowadzona analiza trendu jednoznacznie wskazuje na przyspieszenie terminu kwitnienia obu gatunków średnio o 1.7 dnia/dekadę. Uzyskana wartość trendu jest w głównej mierze spowodowana gwałtownym wzrostem temperatury obserwowanym od lat 90. ubiegłego wieku. W dekadach wcześniejszych fenofazy późnowiosenne nie wykazywały jednoznacznych tendencji zmian.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

69

Numer

2

Opis fizyczny

Article 1671 [15p.], fig.,ref.

Twórcy

autor
  • Department of Climatology, Adam Mickiewicz University in Poznan, Dziegielowa 27, 61-680 Poznan, Poland
autor
  • Department of Air Pollution Modelling, Institute of Meteorology and Water Management – National Research Institute, Podlesna 61, 01-673 Warsaw, Poland

Bibliografia

  • 1. Ahas R. Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int J Biometeorol. 1999;42:119-123. http://dx.doi.org/10.1007/s004840050094
  • 2. Bradley NL, Leopold AC, Ross J, Huffaker W. Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA. 1999;96(17):9701-9704. http://dx.doi.org/10.1073/ pnas.96.17.9701
  • 3. Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H, Changes in European spring phenology. Int J Climatol. 2002;22:1727-1738. http://dx.doi.org/10.1002/joc.818
  • 4. Root TL, Price JT, Hall KR, Schneider KR, Rosenzweig C, Pounds JA. Fingerprints of global warming on wild animals and plants. Nature. 2003;421:57-60. http://dx.doi.org/10.1038/ nature01333
  • 5. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Aha R, et al. European phenological response to climate change matches the warming, Glob Chang Biol. 2006;12:1969-1976. http://dx.doi.org/10.1111/j.1365-2486.2006.01193.x
  • 6. Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S. 2006;37:637-669. http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100
  • 7. Schleip C, Menzel A, Dose V. Bayesian methods in phenology. In: Hudson IL, Keatley MR, editors. Phenological research. Dordrecht: Springer; 2010. p. 229-254. http://dx.doi. org/10.1007/978-90-481-3335-2_11
  • 8. Aono Y, Kazui K. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatol. 2008;28:905-914. http://dx.doi.org/10.1002/joc.1594
  • 9. Schleip C, This R, Luterbacher J, Menzel A. Time series modeling and Central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res. 2008;113:G04026. http://dx.doi.org/10.1029/2007JG000646
  • 10. Koch E, Maurer C, Hammerl C, Hammerl T, Pokorny E. BACCHUS grape harvest days and temperature reconstruction for Vienna from the 16th to the 18th century. In: Ander-ssen RS, Braddock RD, Newham LTH, editors. Proceedings of the 18th World IMACS Congress and M0DSIM09 International Congress on Modelling and Simulation; 2009 Jul 13-17; Cairns, Australia. Christchurch: Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation; 2009. p. 2632-2638.
  • 11. Bradley RS. Paleoclimatology: reconstructing climates of the quaternary. 3rd ed. Amsterdam: Elsevier; 2014.
  • 12. Zheng J, Hua Z, Liu Y, Hao Z. Temperature changes derived from phenological and natural evidences in South Central China from 1850 to 2008. Climate of the Past. 2015;11:4077-4095. http://dx.doi.org/10.5194/cp-11-1553-2015
  • 13. Cybulski H. Średnie wypadki spostrzeżSeń fitofenologicznych, poczynione w Ogrodzie Botanicznym w Warszawie od roku 1865 do 1885. Pamiętnik Fizjograficzny. 1886;6:65-83.
  • 14. Tomaszewska T, Przedpełska W. Dzieje agrometeorologii w Państwowej Służbie Meteorologicznej [Manuscript]. Warszawa: Instytut Meteorologii i Gospodarki Wodnej; 1989.
  • 15. Obrębska-Starklowa B. O badaniach fitofenologicznych w Galicji w XIX wieku (na tle rozwoju fenologii w Europie). Przeglad Geofizyczny. 1993;3-4:289-296.
  • 16. Falińska K. Seasonal dynamics of forest undergrowth in Bialowieża National Park. Phyto-cenosis. 1973;1:3-115.
  • 17. Jabłońska K, Rapiejko P. Using the results of a nationwide phenological network to examine the impact of changes in phenology of plant species on the concentration of plant pollen in the air. Acta Agrobot. 2010;63(2):69-74. http://dx.doi.org/10.5586/aa.2010.034
  • 18. Schaber J, Badeck FW. Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol. 2002;22:973-982. http://dx.doi.org/10.1093/ treephys/22.14.973
  • 19. Fitter A, Fitter R. Rapid changes in flowering time in British plants. Science. 2002;296:1689-1691. http://dx.doi.org/10.1126/science.1071617
  • 20. Hudson IL, Keatley MR. Phenological research. Dordrecht: Springer; 2010. http://dx.doi. org/10.1007/978-90-481-3335-2
  • 21. Jabłońska K, Kwiatkowska-Falińska A, Czernecki B, Walawender J. Changes in spring and summer phenology in Poland - responses of selected plant species to air temperature variations. Pol J Ecol. 2015;63:311-319. http://dx.doi.org/10.3161/15052249PJE2015.633.002
  • 22. Meier U. Growth stages of mono- and dicotyledonous plants: BBCH monograph. Berlin: Blackwell Wissenschafts-Verlag; 1997.
  • 23. Fitter AH, Fitter RS, Harris IT, Williamson MH. Relationship between first flowering date and temperature in the flora of a locality in central England. Funct Ecol. 1995;9:55-60. http://dx.doi.org/10.2307/2390090
  • 24. Sparks TH, Carey PD. The responses of species to climate over two centuries: an analysis of the Marsham phenological record. J Ecol. 1995;83:321-329. http://dx.doi. org/10.2307/2261570
  • 25. Rutishauser T, Luterbacher J, Jeanneret F, Pfister C, Wanner H. A phenology-based reconstruction of interannual changes in past spring seasons. J Geophys Res. 2007;112:G04016. http://dx.doi.org/10.1029/2006JG000382
  • 26. Szabo B, Vincze E, Czúcz B. Flowering phenological changes in relation to climate change in Hungary. Int J Biometeorol. 2016. http://dx.doi.org/10.1007/s00484-015-1128-1
  • 27. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M. A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res Atmos. 2008;113:D2011. http://dx.doi.org/10.1029/2008JD010201
  • 28. Nowosad J. Spatiotemporal models for predicting high pollen concentration level of Cory-lus, Alnus, and Betula. Int J Biometeorol. 2016;60(6):843-855. http://dx.doi.org/10.1007/ s00484-015-1077-8
  • 29. Ustrnul Z, Czekierda D, Application of GIS for the development of climatological air temperature maps: an example from Poland. Meteorological Applications. 2005;12:43-50. http://dx.doi.org/10.1017/S1350482705001507
  • 30. Czernecki B, Miętus M. The thermal seasons variability in Poland, 1951-2010. Theor Appl Climatol. 2015. http://dx.doi.org/10.1007/s00704-015-1647-z
  • 31. Szymanowski M, Kryza M. The role of auxiliary variables in deterministic and deterministic-stochastic spatial models of air temperature in Poland. Pure and Applied Geophysics. 2015. http://dx.doi.org/10.1007/s00024-015-1199-2
  • 32. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1-26. http://dx.doi.org/10.18637/jss.v028.i05
  • 33. Kuhn M, Johnson K. Applied predictive modeling. New York, NY: Springer; 2013. http:// dx.doi.org/10.1007/978-1-4614-6849-3
  • 34. Yeo IK, Johnson R. A new family of power transformations to improve normality or symmetry. Biometrika. 2000;87:954-959. http://dx.doi.org/10.1093/biomet/87.4.954
  • 35. Kuhn M. caret: classification and regression training [Internet]. 2016 [cited 2016 Jun 3]. Available from: http://cran.r-project.org/package=caret
  • 36. Sakamoto, Y, Ishiguro M, Kitagawa G. Akaike information criterion statistics. Tokyo: KTK Scientific Publishers; 1986.
  • 37. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
  • 38. Pebesma EJ. Multivariable geostatistics in S: the gstat package. Comput Geosci. 2004;30:683-691. http://dx.doi.org/10.1016/j.cageo.2004.03.012
  • 39. Taylor KE. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos. 2001;106(D7):7183-7192. http://dx.doi.org/10.1029/2000JD900719
  • 40. Wilks DS. Statistical methods in the atmospheric sciences. 3rd ed. Oxford: Academic Press; 2011. (International Geophysics Series; vol 100).
  • 41. Mann HB. Nonparametric tests against trend. Econometrica. 1945;13:254-259. http:// dx.doi.org/10.2307/1907187
  • 42. Kendall MG. Rank correlation methods. 4th ed. London: Griffin; 1975.
  • 43. Menzel A. Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol. 2000;44:76-81. http://dx.doi.org/10.1007/s004840000054
  • 44. Sparks T, Menzel A. Observed changes in seasons: an overview. Int J Climatol. 2002;22(14):1715-1725. http://dx.doi.org/10.1002/joc.821
  • 45. Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Modell. 2003;160(3):249-264. http://dx.doi.org/10.1016/S0304-3800(02)00257-0
  • 46. Rötzer T, Wittenzeller M, Häckel H, Nekovar J. Phenology in Central Europe - differences and trends of spring-phenophases in urban and rural areas. Int J Biometeorol. 2000;44:60-67. http://dx.doi.org/10.1007/s004840000062
  • 47. Thompson R, Clark RM. Spatio-temporal modelling and assessment of within-species phenological variability using thermal time methods. Int J Biometeorol. 2006;50:312-322. http://dx.doi.org/10.1007/s00484-005-0017-4
  • 48. Siljamo P, Sofiev M, Ranta H, Linkosalo T, Kubin E, Ahas R, et al. Representativeness of pointwise phenological Betula data collected in different parts of Europe. Glob Ecol Bio-geogr. 2008;17(4):489-502. http://dx.doi.org/10.1111/j.1466-8238.2008.00383.x
  • 49. Intergovernmental Panel on Climate Change, Working Group II. Climate change 2007: impacts, adaptation and vulnerability. Geneva: IPCC Secretariat; 2008.
  • 50. Scheifinger H, Menzel A, Koch E, Peter C, Ahas R. Atmospheric mechanisms governing the spatial and temporal variability of phenological observations in central Europe. Int J Climatol. 2002;22:1739-1755. http://dx.doi.org/10.1002/joc.817
  • 51. Sparks T, Tryjanowski P. The detection of climate impacts: some methodological considerations. Int J Climatol. 2005;25(2):271-277. http://dx.doi.org/10.1002/joc.1136
  • 52. Chmielewski FM, Rötzer T. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research. 2002;19:257- 264. http://dx.doi.org/10.3354/cr019257

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ec385954-640e-4a81-ad4b-4650102c66f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.