PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |

Tytuł artykułu

Physiological markers for assessing germinability of Lycopersicon esculentum seeds primed by environment-friendly methods

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Correlations between the sowing value of primed tomato seeds (mean germination time – MGT, germination uniformity – T75-25) and selected physiological events (total activity of dehydrogenases – TAD, activity of catalase – AC, activity of the cell cycle – ACC, and leakage of electrolytes – LE) were analyzed in order to find useful physiological markers of seed quality. To accomplish this purpose, we analyzed the effects of different environment-friendly priming methods, the levels of seed moisture content (MC), and incubation times during priming on germination properties (MGT, T75-25) in relation to TAD, AC, ACC, and LE. In addition, we evaluated the effects of used seed conditioning methods on the growth and development of plants obtained from these seeds. The results showed positive effects of seed conditioning on the growth and development of plants obtained from these seeds, and that MGT and T75-25 were significantly correlated with TAD, AC, ACC, and LE from the seeds. The correlations between MGT and the physiological parameters were the strongest (r2 = 77.0 - 97.2%). Somewhat lower values of the determination coefficient (r2 = 62.8 - 92.7%) were noted between T75-25 and the physiological events. Therefore, the investigated physiological parameters of seed quality can be used as markers of germinability and sowing value reached by primed tomato seeds.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

5

Opis fizyczny

p.1831-1838,fig.,ref.

Twórcy

autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/ 3, 96-100 Skierniewice, Poland
  • Department of Ecophysiology and Plant Development, University of Lodz Banacha 12/16, 90-232 Lodz, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/ 3, 96-100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/ 3, 96-100 Skierniewice, Poland

Bibliografia

  • 1. DE CASTRO R.D., ZHENG X.Y., BERGERVOET J.H.W., DE VOS C.H.R., BINO R.J. ß Tubulin accumulation and DNA replication in imbibing tomato seeds. Plant Physiol. 109, 499, 1995.
  • 2. BRITO C.D., LOUREIRO M.B., TELES C.A.S., SCHUCK M.R., FERNANDEZ L.G., CASTRO R.D. Behavior of Jatropha curcas L. seeds under osmotic stress: germination and cell cycle activity. Acta Sci-Agron. 37 (3), 279, 2015.
  • 3. ŚLIWIŃSKA E. Nuclear DNA replication and seed quality. Seed Sci. Res. 19, 15, 2009.
  • 4. GALLARDO K., JOB C., GROOT S.P.C., PUYPE M., DEMOL H., VANDEKERCKHOVE J., JOB D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126, 835, 2001.
  • 5. BEWLEY J.D., BLACK M. Seeds. Physiology of development and germination. 2nd Ed. New York, Plenum Press. 1994.
  • 6. ZHANG F., YU J., JOHNSTON C.R., WANG Y., ZHU K., LU F., ZHANG F., ZOU J. Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS ONE 10.10, e0140620, 2015.
  • 7. AFZAL I.F., MUNIR C.M., AYUB S.M.A., BASRA A., HAMEED A., NAWAZ A. Changes in antioxidant enzymes, germination capacity and vigour of tomato seeds in response of priming with polyamines. Seed Sci. Technol. 37, 765, 2009.
  • 8. VARIER A., VARI A.K., DADLANI M. The sub-cellular basis of seed priming. Current Science. 99, 450, 2010.
  • 9. CHEN K., ARORA R. Priming memory invokes seed stresstolerance. Environ. Exp. Bot. 94, 33, 2013.
  • 10. MCDONALD M.B. Seed Technology and its Biological Basis. In: Black M., Bewley J.D. (eds.): Sheffield Academic Press. England; CRC Press. U.S.A. and Canada. 287, 2000.
  • 11. TAYLOR A., HALMER P. Seed physiology: advances and technology innovations. Fisiologia de Sementes. 20, 72, 2010.
  • 12. BADEK B., VAN DUIJN B., GRZESIK M. Effects of water supply methods and seed moisture content on germination of China aster (Callistephus chinensis) and tomato (Lycopersicon esculentum Mill.) seeds. Eur. J. Agron. 24, 45, 2006.
  • 13. BADEK B., VAN DUIJN B., GRZESIK M. Effects of water supply methods and incubation on germination of China aster (Callistephus chinensis) seeds. Seed Sci. Technol. 35, 569, 2007.
  • 14. ISTA. International Rules for Seed Testing. Seed Sci. Technol. 2011.
  • 15. GÓRNIK K., GRZESIK M. Effect of Asahi SL on China aster ‘Aleksandra’ seed yield, germination and some metabolic events. Acta Physiol. Plant. 24, 379, 2002.
  • 16. BAILLY C., BENAMAR A., CORBINEAU F., CÔME D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated ageing. Physiol. Plantarum. 97, 104, 1996.
  • 17. ŚLIWIŃSKA E. Zastosowanie cytometrii przepływowej do oznaczania zawartości DNA u roślin. Estimation of DNA content in plants using flow cytometry. Postępy Biologii Komórki, 24, 165, 2008.
  • 18. VENTURA L., DONÀ M., MACOVEI A., CARBONERA D., BUTTAFAVA A., MONDONI A., ROSSI G., BALESTRAZZI A. Understanding the molecular pathways associated with seed vigor. Plant Physiol. Bioch. 60, 196, 2012.
  • 19. GRZESIK M., ROMANOWSKA-DUDA Z.B. Biotechnological potential of algae and Cyanobacteria in improving germination, growth and metabolic activity of corn plants by grain conditioning and root application. Pol. J. Environ. Stud. 23, 1147, 2014.
  • 20. DEL RYO L.A., CORPAS F.J., SANDALIO L.M., PALMA J.M., GO´MEZ M., BARROSO J.B. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 53, 1255, 2002.
  • 21. KĘPCZYŃSKA E., PIĘKNA-GROCHALA J., KĘPCZYŃSKI J. Effect of matriconditioning on onion seed germination, seedling emergence and associated physical and metabolic events. Plant Growth Regul. 41, 269, 2003.
  • 22. MATTHEWS S., POWELL A.A. Electrical conductivity vigour test: physiological basis and use. ISTA News Bulletin. 131, 32, 2006.
  • 23. DEMIR I., CEBECI C., GULOKSUZ T. Electrical conductivity measurement to predict germination of commercially available radish seed lots. Seed Sci. Technol. 40, 229, 2012.
  • 24. AMOOAGHAIE R., NIKZAD K., SHAREGHI B. The effect of priming on emergence and biochemical changes of tomato seeds under suboptimal temperatures. Seed Sci. Technol. 38, 508, 2010.
  • 25. KERE G.M., Guo Q., Chen J. Growth and physiological responses of cucumber (Cucumis sativus L.) to sodium chloride stress under solid hydroponics J. Environ. Agric. Sci. 6, 47, 2016.
  • 26. MIRDAD Z., POWELL A.A., MATTHEWS S. Prediction of germination in artificially aged seeds of Brassica spp. Using the bulk conductivity test. Seed Sci Technol 34, 273, 2006.
  • 27. DEMIR I., MAVI K., KENANOGLU B.B., MATTHEWS S. Prediction of germination and vigour in naturally aged commercially available seed lots of cabbage (Brassica oleracea var. capitata) using the bulk conductivity method. Seed Sci Technol 36, 509, 2008.
  • 28. MATTHEWS S., DEMIR I., CELIKKOL T., KENANOGLU B.B., MAVI K. Vigour tests for cabbage seeds using electrical conductivity and controlled deterioration to estimate relative emergence in transplant modules. Seed Sci Technol 37, 736, 2009.
  • 29. BAJJI M., KINET J.M., LUTTS S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36.1, 61, 2002.
  • 30. BRAY C.M., DAVISON P.A., ASHRAF M., TAYLOR R.M. Biochemical changes during priming of leek seeds. Ann Bot. 63, 185, 1989.
  • 31. ONWIMOL D., CHANPRAME S., THONGKET T. Arrest of cell cycle associated with delayed radicle emergence in deteriorated cucumber seed. Seed Sci. Technol. 40, 238, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ebc9f68f-d6fb-431c-b5a2-fcd6a399eea9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.