Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 2 |
Tytuł artykułu

Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones

Treść / Zawartość
Warianty tytułu
Języki publikacji
Hairy root-regenerated clones of Hypericum perforatum L. grown in vitro similarly to those successfully adapted to ex vitro conditions showed phenotype features typical for plants transformed with Agrobacterium rhizogenes T-DNA. These included reduced apical dominance, increased branching, dwarfing and reduced fertility. Transgenic clones differed in ability to develop root system as a necessary condition for transfer to the soil. One of the profiling characters, capability of hypericin biosynthesis was altered as well. Dark glands as the sites of hypericin accumulation and/or synthesis exhibited significantly higher densities on both, leaves and petals of transgenic clones comparing to controls. In the genome of transgenic clones, rolABC genes were detected. Both clones harboured similar copy number of individual rol genes. However, copy numbers descended from rolA to rolC gene in both clones.
Słowa kluczowe
Opis fizyczny
  • Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, Manesova 23, 041 54 Kosice, Slovakia
  • Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, Manesova 23, 041 54 Kosice, Slovakia
  • Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, Manesova 23, 041 54 Kosice, Slovakia
  • CRA, FSO, Experimental Unit for Floriculture and Ornamental Species, corso Inglesi 508, 18038 San Remo, Imperia, Italy
  • Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, Manesova 23, 041 54 Kosice, Slovakia
  • Beerhues L (2006) Hyperforin. Phytochemistry 67:2201–2207
  • Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol Biochem 39:1075–1081
  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324
  • Čellárová E, Daxnerová Z, Kimáková K, Halušková J (1994) The variability of the hypericin content in the regenerants of Hypericum perforatum. Acta Biotechnol 14:267–274
  • Celma CR, Palazon J, Cusido RM, Pinol MT, Keil M (2001) Decreased scopolamine yield in field-grown Duboisia plants regenerated from hairy roots. Planta Med 67:249–253
  • Cirak C, Radusien J, (Saglam) Karabuk B, Janulis V (2007) Variation of bioactive substances and morphological traits in Hypericum perforatum populations from Northern Turkey. Biochem Syst Ecol 35:403–409
  • Couceiro MA, Afreen F, Zobayed SMA, Kozai T (2006) Variation in concentrations of major bioactive compounds of St. John’s wort: effects of harvesting time, temperature and germplasm. Plant Sci 170:128–134
  • DiGuardo A,Čellárová E, Koperdáková J, Pistelli L, Rufonni B,Allavena A, Giovannini A (2003) Hairy root induction and plant regeneration in Hypericum perforatum L. J Genet Breed 57:269–278
  • Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci 172:1193–1203
  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cultures. Exp Cell Res 50:151–158
  • Handa T (1992) Genetic transformation of Antirrhinum majus L. and inheritance of altered phenotype induced by Ri T-DNA. Plant Sci 81:199–206
  • Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root inducing plasmid: physical map and homology to tumorinducing plasmids. J Bacteriol 157:269–276
  • Kirakosyan A, Gibson DM, Sirvent T (2004) A comparative study of Hypericum perforatum plants as sources of hypericins and hyperforins. J Herbs Species Med 10:73–88
  • Koike Y, Hoshino Y, Mii M, Nakano M (2003) Horticultural characterization of Angelonia salicariifolia plants transformed with wild-type strains of Agrobacterium rhizogenes. Plant Cell Rep 21:981–987
  • Kornfeld A, Kaufman PB, Lu CR, Gibson DM, Bolling SF, Warber SL, Chang SC, Kirakosyan A (2007) The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland structure. Plant Physiol Biochem 45:24–32
  • Kubin A, Wierrani F, Burner U, Alth G, Grünberger W (2005) Hypericin—the facts about a controversial agent. Curr Pharm Design 11:233–253
  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127
  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20–29
  • Oksman-Caldentey K-M, Kivela O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant-regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78:129–136
  • Pastírová A, Repčák M, Eliášová A (2004) Salicylic acid induces changes of coumarin metabolites in Matricaria chamomilla L. Plant Sci 167:819–824
  • Pospíšílová J, Tichá I, Kadleček P, Haisel D, Plzáková Š (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481–497
  • Saito K, Yamazaki M, Anzai H, Yoneyama K, Murakoshi I (1992) Transgenic herbicide-resistant Atropa belladonna using an Ri binary vector and inheritance of the transgenic trait. Plant Cell Rep 11:219–224
  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629
  • Senior I, Holford P, Cooley RN, Newbury HJ (1995) Transformation of Antirrhinum majus using Agrobacterium rhizogenes. J Exp Bot 46:1233–1239
  • Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey K-M (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611
  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121
  • Southwell IA, Campbell MH (1991) Hypericin content variation in Hypericum perforatum in Australia. Phytochemistry 30:475–478
  • Vahdati K, McKenna JR, Dandekar AM, Leslie CA, Uratsu SL, Hackett WP, Negri P, McGranahan GH (2002) Rooting and other characteristics of a transgenic walnut hybrid (Juglans hindsii x J. regia) rootstock expressing rolABC. J Am Soc Hortic Sci 127:724–728
  • Vinterhalter B, Ninkovic S, Cingel A, Vinterhalter D (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50:767–770
  • Walker L, Sirvent T, Gibson D, Vance N (2001) Regional differences in hypericin and pseudohypericin concentrations and five morphological traits among Hypericum perforatum plants in the northwestern United States. Can J Bot 79:1248–1255
  • Zdravkovic-Korac S, Calic D, Druart PH, Radojevic L (2004) The horse chestnut lines harboring the rol genes. Biol Plant 47:487–491
  • Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot (Lond) 98:793–804
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.