PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 79 |

Tytuł artykułu

Growth response of different tree species (oaks, beech and pine) from SE Europe to precipitation over time

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Changing climatic conditions can have various consequences for forest ecosystems, from increasing frequencies of forest fires, ice and windstorm events to pathogen outbreaks and mass mortalities. The Standardized Precipitation Index (SPI) was chosen for the evaluation of drought impact on the radial growth of trees after extensive preliminary testing of various calculated monthly climate parameters from the CARPATCLIM database. SPI was calculated for periods between 3 and 36 months for different sites (lowland and mountainous parts of Serbia, Southeast Europe), from which Quercus robur, Q. cerris, Fagus sylvatica and Pinus sylvestris samples were acquired. Bootstrapped Pearson’s correlations between SPI monthly indices and radial growth of tree species were calculated. We found that 12-month SPI for summer months may be a good predictor of positive and negative growth of different species at different sites. The strongest positive correlations for five of six tree-ring width chronologies were between 12-month June and 14-month September SPI, which implies that high growth rates can be expected when the autumn of the previous year, and winter, spring and summer of the current year, are well supplied with precipitation, and vice versa (low precipitation in given period/low growth rates).

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Opis fizyczny

p.97–110,fig.,ref.

Twórcy

Bibliografia

  • Allen CD, Breshears DD & McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6: 1–55. doi:10.1890/es15-00203.1.
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A & Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684. doi:10.1016/j.foreco.2009.09.001.
  • Alley WM (1984) The Palmer Drought Severity Index: limitations and assumptions. Journal of Climate and Applied Meteorology 23: 1100–1109. doi:10.1175/1520-0450(1984)023<1100:tpdsil>2.0.co;2.
  • Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N, Pan Y, Raffa K, Sala A, Shaw JD, Stephenson NL, Tague C & Zeppel M (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208: 674–683. doi:10.1111/nph.13477.
  • Asadi Zarch M, Malekinezhad H, Mobin MH, Dastorani MT & Kousari MR (2011) Drought monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resources Management 25: 3485–3504. doi:10.1007/s11269-011-9867-1.
  • Baillie MGL & Pilcher JR (1973) A simple crossdating program for tree-ring research. Tree-Ring Bulletin 33: 7–14.
  • Beguería S, Vicente-Serrano SM, Reig F & Latorre B (2013) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology 34: 3001–3023. doi:10.1002/joc.3887.
  • Berdanier AB & Clark JS (2016) Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests. Ecological Applications 26: 17–23. doi:10.1890/15-0274.
  • Bhuyan U, Zang C & Menzel A (2017) Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44: 1–8. doi:10.1016/j.dendro.2017.02.002.
  • Bigler C, Bräker OU, Bugmann H, Dobbertin M & Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9: 330–343. doi:10.1007/s10021-005-0126-2.
  • Bréda N, Huc R, Granier A & Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 63: 625–644. doi:10.1051/forest:2006042.
  • Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M, Cada V, Camarero JJ, Cherubini P, Cochard H, Coyea MR, Cufar K, Das AJ, Davi H, Delzon S, Dorman M, Gea-Izquierdo G, Gillner S, Haavik LJ, Hartmann H, Heres AM, Hultine KR, Janda P, Kane JM, Kharuk VI, Kitzberger T, Klein T, Kramer K, Lens F, Levanic T, Linares Calderon JC, Lloret F, Lobo-Do-Vale R, Lombardi F, Lopez Rodriguez R, Makinen H, Mayr S, Meszaros I, Metsaranta JM, Minunno F, Oberhuber W, Papadopoulos A, Peltoniemi M, Petritan AM, Rohner B, Sanguesa-Barreda G, Sarris D, Smith JM, Stan AB, Sterck F, Stojanovic DB, Suarez ML, Svoboda M, Tognetti R, Torres-Ruiz JM, Trotsiuk V, Villalba R, Vodde F, Westwood AR, Wyckoff PH, Zafirov N & Martinez-Vilalta J (2017) A synthesis of radial growth patterns preceding tree mortality. Global Change Biology 23: 1675–1690. doi:10.1111/gcb.13535.
  • Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G & Penuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences 108: 1474–1478. doi:10.1073/pnas.1010070108.
  • Čater M & Levanič T (2004) Increment and environmental conditions in two Slovenian pedunculate-oak forest complexes. Ekologia-Bratislava 23: 353–365.
  • Charney ND, Babst F, Poulter B, Record S, Trouet VM, Frank D, Enquist BJ & Evans MEK (2016) Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecology Letters 19: 1119–1128. doi:10.1111/ele.12650.
  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ & Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491: 752–755. doi:10.1038/nature11688.
  • Cook ER (1985) Time series analysis approach to tree ring standardization. Laboratory of Tree-Ring Research, University of Arizona, Tucson.
  • Cook ER & Holmes RL (1999) Program ARSTAN – chronology development with statistical analysis (users manual for program ARSTAN). Laboratory of Tree-Ring Research, University of Arizona, Tucson.
  • Čufar K, De Luis M, Eckstein D & Kajfež-Bogataj L (2008a) Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. International Journal of Biometeorology 52: 607–615. doi:10.1007/s00484-008-0153-8.
  • Čufar K, De Luis M, Horvat E & Prislan P (2008b) Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zbornik gozdarstva in lesarstva 87: 123–134.
  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ & Michael Wotton B (2001) Climate change and forest disturbances. BioScience 51: 723–734. doi:10.1641/0006-3568(2001)051[0723:ccafd]2.0.co;2.
  • Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B & Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography 34: 1873–1892. doi:10.1111/j.1365-2699.2007.01747.x.
  • Eckstein D & Bauch J (1969) Beitrag zur rationalisierung eines dendrochronologischen verfahrens und zur analyse seiner aussagesicherheit. Forstwissenschaftliches Centralblatt 88: 230–250.
  • Feldpausch TR, Phillips OL, Brienen RJW, Gloor E, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Alarcón A, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragao LEOC, Arroyo L, Aymard C GA, Baker TR, Baraloto C, Barroso J, Bonal D, Castro W, Chama V, Chave J, Domingues TF, Fauset S, Groot N, Honorio Coronado E, Laurance S, Laurance WF, Lewis SL, Licona JC, Marimon BS, Marimon-Junior BH, Mendoza Bautista C, Neill DA, Oliveira EA, Oliveira dos Santos C, Pallqui Camacho NC, Pardo-Molina G, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Réjou-Méchain M, Rudas A, Saiz G, Salomão RP, Silva-Espejo JE, Silveira M, ter Steege H, Stropp J, Terborgh J, Thomas-Caesar R, van der Heijden GMF, Vásquez Martinez R, Vilanova E & Vos VA (2016) Amazon forest response to repeated droughts. Global Biogeochemical Cycles 30: 964–982. doi:10.1002/2015GB005133.
  • Garamszegi B & Kern Z (2014) Climate influence on radial growth of Fagus sylvatica growing near the edge of its distribution in Bükk Mts., Hungary. Dendrobiology 72: 93–102. doi:10.12657/denbio.072.008.
  • Guttman NB (1998) Comparing the Palmer Drought Index and the Standardized Precipitation Index. Journal of the American Water Resources Association 34: 113–121.
  • Guttman NB (1999) Accepting the Standardized Precipitation Index: a calculatation algorithm. JAWRA Journal of the American Water Resources Association 35: 311–322. doi:10.1111/j.1752-1688.1999.tb03592.x.
  • Jump AS, Hunt JM & Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 12: 2163–2174. doi:10.1111/j.1365-2486.2006.01250.x.
  • Kern Z, Patkó M, Kázmér M, Fekete J, Kele S & Pályi Z (2013) Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quaternary International 293: 257–267. doi:10.1016/j.quaint.2012.05.037.
  • Levanič T (2007) ATRICS – A new system for image acquisition in dendrochronology. Tree-Ring Research 63: 117–122.
  • Levanič T, Čater M & McDowell NG (2011) Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest. Tree Physiology 31: 298–308. doi:10.1093/treephys/tpq111.
  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ & Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698–709. doi:10.1016/j.foreco.2009.09.023.
  • Littell JS, Peterson DL, Riley KL, Liu Y & Luce CH (2016) A review of the relationships between drought and forest fire in the United States. Global Change Biology 22: 2353–2369. doi:10.1111/gcb.13275.
  • Maracchi G, Sirotenko O & Bindi M (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change 70: 117–135. doi:10.1007/s10584-005-5939-7.
  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology 155: 1051–1059. doi:10.1104/pp.110.170704.
  • McDowell NG, Williams AP, Xu C, Pockman WT, Dickman LT, Sevanto S, Pangle R, Limousin J, Plaut J, Mackay DS, Ogee J, Domec JC, Allen CD, Fisher RA, Jiang X, Muss JD, Breshears DD, Rauscher SA & Koven C (2015) Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nature Climate Change 6: 295–300. doi:10.1038/nclimate2873.
  • McKee TB, Doesken NJ & Kliest J (1993) The relationship of drought frequency and duration to time scales: Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston, MA, USA, Anaheim, CA, USA, pp. 179–184.
  • Misi D & Náfrádi K (2016) Possibility of identification of negative extreme climatic events using Pinus sylvestris tree-rings in Transdanubia, Hungary. Dendrobiology 75: 45–54. doi:10.12657/denbio.075.005.
  • Misi D & Náfrádi K (2017) Growth response of Scots pine to changing climatic conditions over the last 100 years: a case study from Western Hungary. Trees 31: 919–928. doi:10.1007/s00468-016-1517-z.
  • Mueller RC, Scudder CM, Porter ME, Talbot Trotter R, Gehring CA & Whitham TG (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology 93: 1085–1093. doi:10.1111/j.1365-2745.2005.01042.x.
  • Nechita C, Popa I & Eggertsson O (2017) Climate response of oak (Quercus spp.), an evidence of a bioclimatic boundary induced by the Carpathians. Science of the Total Environment 599–600: 1598–1607. doi:10.1016/j.scitotenv.2017.05.118.
  • Panayotov MP, Zafirov N & Cherubini P (2012) Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees 27: 211–227. doi:10.1007/s00468-012-0789-1.
  • Park S, Im J, Jang E & Rhee J (2016) Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agricultural and Forest Meteorology 216: 157–169. doi:10.1016/j.agrformet.2015.10.011.
  • Park Williams A, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M & McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3: 292–297. doi:10.1038/nclimate1693.
  • Pilcher JR & Gray B (1982) The relationships between oak tree growth and climate in Britain. The Journal of Ecology 70: 297–304. doi:10.2307/2259880.
  • Piovesan G, Biondi F, Filippo AD, Alessandrini A & Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Global Change Biology 14: 1265–1281. doi:10.1111/j.1365-2486.2008.01570.x.
  • Poljanšek S, Levanič T, Ballian D & Jalkanen R (2015) Tree growth and needle dynamics of P. nigra and P. sylvestris and their response to climate and fire disturbances. Trees 29: 683–694. doi:10.1007/s00468-014-1146-3.
  • Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T & Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. European Journal of Forest Research 134: 927–947. doi:10.1007/s10342-015-0900-4.
  • Rybníček M, Čermák P, Prokop O, Žid T, Trnka M & Kolář T (2016) Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 75: 55–65. doi:10.12657/denbio.075.006.
  • Sidor CG & Popa I (2015) The influence of monthly and periodical meteorological parameters on the radial growth of Silver fir, Scots pine and larch in Banat. Bucovina Forestiera 15: 55–63.
  • Stojanović D, Levanič T & Matović B (2015a) Correlation between different climate variables and indices and growth of Turkey oak (Quercus cerris L.). Topola 195–196: 23–29.
  • Stojanović D, Levanič T, Matović B & Bravo-Oviedo A (2015b) Climate change impact on a mixed lowland oak stand in Serbia. Annals of Silvicultural Research 39: 94–99. doi:10.12899/asr-1126.
  • Stojanović D, Levanič T, Matović B & Orlović S (2015c) Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. European Journal of Forest Research 134: 555–567. doi:10.1007/s10342-015-0871-5.
  • Stokes MA & Smiley TL (1968) An introduction to tree-ring dating. 2nd edn. The University of Arizona Press, Tucson.
  • Szalai S, Auer I, Hiebl J, Milkovich J, Radim T, Stepanek P, Zahradnicek P, Bihari Z, Lakatos M, Szentimrey T, Limanowka D, Kilar P, Cheval S, Deak G, Mihic D, Antolovic I, Mihajlovic V, Nejedlik P, Stastny P, Mikulova K, Nabyvanets I, Skyryk O, Krakovskaya S, Vogt J, Antofie T & Spinoni J (2013) Climate of the greater carpathian region – final technical report.
  • Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T & Büntgen U (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research 133: 61–71. doi:10.1007/s10342-013-0737-7.
  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR & Sheffield J (2014) Global warming and changes in drought. Nature Climate Change 4: 17–22. doi:10.1038/nclimate2067.
  • Trumbore S, Brando P & Hartmann H (2015) Forest health and global change. Science 349: 814-818. doi:10.1126/science.aac6759.
  • Tsakiris G, Pangalou D & Vangelis H (2007) Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management 21: 821–833. doi:10.1007/s11269-006-9105-4.
  • van Mantgem PJ & Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecology Letters 10: 909–916. doi:10.1111/j.1461-0248.2007.01080.x.
  • Vicente-Serrano SM, Beguería S & López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate 23: 1696–1718. doi:10.1175/2009jcli2909.1.
  • Zang C & Biondi F (2013) Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia 31: 68–74. doi:http://dx.doi.org/10.1016/j.dendro.2012.08.001.
  • Zimmermann J, Hauck M, Dulamsuren C & Leuschner C (2015) Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18: 560–572. doi:10.1007/s10021-015-9849-x.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb354ce0-a2c0-46b8-97f1-83b02a6bd26c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.