PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 17 | 3 |

Tytuł artykułu

Method for determination of critical and effective diameter of pipeline insulation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN

Wydawca

-

Rocznik

Tom

17

Numer

3

Opis fizyczny

http://www.ejpau.media.pl/volume17/issue3/art-10.html

Twórcy

  • Department of Applied Mathematics, University of Life Sciences in Lublin, 13 Akademicka, 20-950 Lublin, Poland
autor
  • Department of Refrigeration and Food Industry Energetics, University of Life Sciences in Lublin, 44 Doswiadczalna, 20-280 Lublin, Poland
autor
  • Department of Refrigeration and Food Industry Energetics, University of Life Sciences in Lublin, 44 Doswiadczalna, 20-280 Lublin, Poland
autor
  • Department of Applied Mathematics, University of Life Sciences in Lublin, 13 Akademicka, 20-950 Lublin, Poland

Bibliografia

  • 1. Davis R.A., 2007. An Explicit Expression for the Break-Even Radius of Insulation on a Cylinder in Cross-Flow. J. Eng., comp. and archit. 1, 1.
  • 2. Fernández-Seara J., Uhía F.J., Dopazo J.A., 2011. Experimental transient natural convection heat transfer from a vertical cylindrical tank. Appl. Therm. Eng., 31, 11–12, 1915–1922.
  • 3. Guldbrandsen T., Karlsson P.W., Korsgaard V., 2011. Analytical model of heat transfer in porous insulation around cold pipes. Int. J. Heat Mass Transfer., 54, 1–3, 288–292.
  • 4. Keçebaş A., 2012. Determination of insulation thickness by means of exergy analysis in pipe insulation. Energy Convers. Manage., 58, 76–83.
  • 5. Kulkarni M.R., 2004. Critical radius for radial heat conduction: a necessary criterion but not always sufficient. Appl. Therm. Eng., 24, 7, 967–979.
  • 6. Luo J., Rohn J., Bayer M., Priess A., 2013. Modeling and experiments on energy loss in horizontal connecting pipe of vertical ground source heat pump system. Appl. Therm. Eng., 61, 2, 55–64.
  • 7. Macher W., Kömle N.I., Bentley M.S., Kargl G., 2013. The heated infinite cylinder with sheath and two thermal surface resistance layers. Int. J. Heat Mass Transfer, 57, 2, 528–534.
  • 8. Moharana Ku.M., Das Ku.P., 2012. Heat conduction through eccentric annuli: An appraisal of analytical, semi-analytical, and approximate techniques. J. Heat Trans., 134.
  • 9. Sahin A.Z., Kalyon M., 2004. The critical radius of insulation in thermal radiation environment. Heat Mass Transfer., 40, 5, 377–382.
  • 10. Taler D., Ocłoń P., 2014. Thermal contact resistance in plate fin-and-tube heat exchangers, determined by experimental data and CFD simulations. Int. J. Thermal Sci., 84, 309–322.
  • 11. Thirumaleshwar M., 2006. Fundamentals of Heat and Mass Transfer. Dorling Kindersley Pvt Ltd, Delhi.
  • 12. Wong K.-L., Chen W.-L., Hsien T.-L., Chou H.-M., 2010. The critical heat transfer characteristics of an insulated oval duct. Energy Convers. Manage., 51, 7, 1442–1448.
  • 13. Wong K.-L., Chou H.-M., Her B.-S., Yeh H.-C., 2004. Complete heat transfer solutions of an insulated regular cubic tank with an SSWT model. Energy Convers. Manage., 45, 18–19, 2813–2831.
  • 14. Wong K.-L., Chou H.-M., Li Y.-H., 2004. Complete heat transfer solutions of an insulated regular polygonal pipe by using a PWTR model. Energy Convers. Manage., 45, 11–12, 1705–1724.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb2161af-28fb-4856-be17-defd78bd5d45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.