PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 4 |

Tytuł artykułu

Vegetative salt tolerance of barnyard grass mutants selected for salt tolerant germination

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Improving salt tolerance of economically important plants is imperative to cope with the increasing soil salinity in many parts of the world. Mutation breeding has been widely used to improve plant performance under salinity stress. In this study, we have mutagenized Echinochloa crusgalli L. with sodium azide and three selected mutants (designated fows A) with salt tolerant germination. Their vegetative growth was compared to that of the wild type after short-term and long-term salt stress. The germination of the three fows A mutants in the presence of inhibitory concentrations of NaCl, KCL, and mannitol was better than that of the wild type. Early growth of the mutants in the presence of 200 mM NaCl was also better than that of the wild type perhaps due to improved K⁺ uptake and enhanced accumulation of sugars particularly sucrose at least in two mutants. But the three mutants and the wild type responded similarly to long-term salt stress. The tolerance mechanisms during short-term and long-term salt stress are discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

4

Opis fizyczny

p.815-824,fig.,ref.

Twórcy

  • Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK
autor
  • Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK

Bibliografia

  • Apse MP, Aharon GS, Sneddon WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na1/H1 antiport in Arabidopsis. Science 285:1256–1258. doi:10.1126/ science.285.5431.1256
  • Bates LE, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060
  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066. doi:10.1105/tpc.9.7.1055
  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York
  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434. doi:10.1016/S0955-0674 (00)00112-5
  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151. doi:10.1016/S0005-2736(00)00135-8
  • Boorman LA (1968) Some aspects of the reproductive biology of Limonium vlgare Mill. And Limonium humile Mill. Ann Bot (Lond) 32:803–824
  • Bradford KJ (1990) A water relation analysis of seed germination rates. Plant Physiol 94:840–849
  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190. doi: 10.1104/pp.010917
  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K⁺/Na⁺ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725. doi: 10.1104/pp.107.110262
  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Scientia Hortic 78:83–125. doi:10.1016/S0304-4238(98)00191-5
  • Cuin TA, Shabala S (2006) Potassium homeostasis in salinised plant tissues. In: Volkov A (ed) Plant electrophysiology—theory and methods. Springer, Heidelberg, pp 287–317
  • de Castro RD, van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000) Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122:327–335. doi:10.1104/pp.122.2.327
  • Dubcovsky J, Luo MC, Zhong GY, Bransteiter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999
  • EA IA (1977) Manual on mutation breeding, 2nd edn. IAEA, Vienna
  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Cunninham GA, Wrona AF (1980) Saline culture of corps: a genetic approach. Science 210:399–409. doi:10.1126/science.210.4468.399
  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: what next? Aust J Plant Physiol 22:875–884
  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121. doi: 10.1146/annurev.pp.28.060177.000513
  • Gorham J, Bristol A, Young EM, Wyn Jones RG, Kashour G (1990) Salt tolerance in the Triticeae: K⁺/Na⁺ discrimination in barley. J Exp Bot 41:1095–1101. doi:10.1093/jxb/41.9.1095
  • Greenway H, Munns R (1980) Mechanisms of slat tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190. doi:10.1146/annurev.pp.31.060180.001053
  • Hasegawa PM, Bressan RA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463
  • Keiffer CH, Ungar IA (1997) The effect of extended exposure to hypersaline conditions on the germination of five inland halophyte species. Am J Bot 84:104–111. doi:10.2307/2445887
  • Khan MA, Ungar IA (1984) The effect of salinity and temperature on germination of polymorphic seeds and growth of Atriplex triangularis. Am J Bot 71:481–489. doi:10.2307/2443323
  • Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117. doi:10.1104/pp.010348
  • Maathuis FJM, Amtmann A (1999) K⁺ nutrition and Na⁺ toxicity: the basis of cellular K⁺/Na⁺ ratios. Ann Bot (Lond) 84:123–133. doi:10.1006/anbo.1999.0912
  • Macke AJ, Ungar IA (1971) The effect of salinity on germination and early growth of Puccinella nuttalliana. Can J Bot 49:515–520. doi:10.1139/b71-081
  • Molina-Cano JL, Simiand JP, Sopena A, Perez-Vendrell AM, Dorsch S, Rubiales D, Swanston JS, Jahoor A (2003) Mildew-resistant mutants induced in North American two and six-rowed malting barley cultivars. Theor Appl Genet 107:1278–1287. doi: 10.1007/s00122-003-1362-5
  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59. 032607.092911
  • Olsen O, Wang X, Wettstein DV (1993) Sodium azide mutagenesis: Preferential generation of AT → GC transitions in the barley Antl8 gene. Proc Natl Acad Sci USA 90:8043–8047. doi: 10.1073/pnas.90.17.8043
  • Peng Y-H, Zhu Y-F, Mao Y-Q, Wang S-M, Su W-A, Tang Z-C (2004) Alkali grass resists salt stress through high [K⁺] and an endodermis barrier to Na⁺. J Exp Bot 55:939–949. doi: 10.1093/jxb/erh071
  • Qu X-X, Hung Z-Y, Baskin JM, Baskin CC (2008) Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann Bot (Lond) 101:293–299. doi: 10.1093/aob/mcm047
  • Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salttolerant mutants in Arabidopsis thaliana. Genetics 154:421–436
  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663. doi: 10.1126/science.270.5242.1660
  • Shabala L, Cuin TA, Newman I, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos1 mutants. Planta 222:1041–1050. doi:10.1007/s00425-005-0074-2
  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na⁺/H⁺ antiporter SOS1 controls long distance Na1 transport in plants. Plant Cell 14:465–477. doi:10.1105/tpc. 010371
  • Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, London
  • Stitt M (1990) Fructose 2,6-bisphosphate. In: Lea PJ (ed) Methods in plant biochemistry. Academic Press, London, pp 87–92
  • Vicente MJ, Conesa E, Lvarez-Rogel JA, Franco JA, Martınez-Sanchez JJ (2007) Effects of various salts on the germination of three perennial salt marsh species. Aquat Bot 87:167–170. doi: 10.1016/j.aquabot.2007.04.004
  • Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol Plant 93:659–666. doi:10.1111/j.1399-3054.1995.tb05114.x
  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768. doi:10.1038/90824
  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant. 53.091401.143329
  • Zwar JA (1995) a-Amylase production and leaf protein synthesis in a gibberellin-responsive dwarf mutant of ‘‘Himalaya’’ barley (Hordeum vulgare L.). Planta 197:39–48. doi:10.1007/BF00239937

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb2033c6-111c-4721-b1dd-667d55ae3719
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.