PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 59 | 1 |

Tytuł artykułu

Efficient immobilization of milk clotting enzyme produced by Bacillus sphaericus

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Milk clotting enzyme produced by Bacillus sphaericus NRC 24 was immobilized efficiently on silica gel with 73% activity retained. Optimum conditions for immobilization of milk clotting enzyme were as follows: pH 5, 4 h contact time and 0.5 mg/mL protein in bulk solution. Optimum pH of the immobilized enzyme was found to be 4 compared to 6 for free enzyme. Optimum temperature ranged from 60° to 70°C for both free and immobilized enzyme preparations. The activation energy (Ea) of the immobilized enzyme was lower than that of the free enzyme (Ea=12.5 and 16.5 Kcal/mol, respectively). Immobilized enzyme showed improved pH, thermal, storage and operational stabilities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

59

Numer

1

Opis fizyczny

p.67-72,fig.,ref.

Twórcy

  • Microbial Chemistry Department, National Research Centre, Dokki, Giza, Egypt
autor

Bibliografia

  • 1. Ahmed S.A.A., Biochemical studies on some enzymes used in industry. 2003, Ph.D Thesis, Cario University, Faculty of Agriculture, Cairo, Egypt, pp. 109–135
  • 2. Altun G.D., Cetinus, S.A., Immobilization of pepsin on chitosan beads. Food Chem., 2007, 100, 964–971.
  • 3. Bickerstaff G.F., Application of immobilized enzymes to fundamental studies on enzyme structure and function. Int. J. Biochem., 1980, 11, 163–201.
  • 4. Cao L., Langen, L.V., Sheldon, R.A., Immobilized enzymes: carrier-bound or carrier free? Curr. Opin. Biotechnol., 2003, 14, 387–394.
  • 5. Chae H.J., Kim E.Y., In M-J., Improved immobilization yields by addition of protecting agents in glutaraldehyde-induced immobilization of protease. J. Biosci. Bioeng., 2000, 89, 377–379.
  • 6. Chellapandian M., Preparation and characterization of alkaline protease immobilized on vermiculite. Proc. Biochem., 1998, 33, 169–173.
  • 7. Curcio S., Calabro V., Iorio., An experimental analysis of membrane bioreactor performances with immobilized chymosin. J. Membrane Sci., 2000, 105, 247–261.
  • 8. Das G., Prabbu K.A., Immobilization of cane amylase and acid phosphatase on tricalcium phosphate (TCP) gel. Enz. Microb. Technol., 1990, 2, 625–630.
  • 9. El-Bendary M.A., Formation and properties of serine protease enzyme with milk-clotting activity from Bacillus sphaericus. Egypt. J. Appl. Sci., 2004, 19, 68–91.
  • 10. El-Bendary M.A., Moharam M.A., Ali T.H., Purification and characterization of milk clotting enzyme produced by Bacillus sphaericus. J. Appl. Sci. Res., 2007, 3, 695–699.
  • 11. Esawy M.A., Combet-Blanc Y., Immobilization of Bacillus licheniformis 5A1 milk clotting enzyme and characterization of its enzyme properties. World J. Microbiol. Biotechnol., 2006, 22, 197–200.
  • 12. Frydlova J., Kucerova Z., Ticha M., Affinity chromatography of proteins pepsin and pepsinogen using immobilized ligands derived from specific substrate for this enzyme. J. Chromatogr. B, 2004, 800, 109–114.
  • 13. Godjevargova T., Nenkova R., Konsulov V., Immobilization of glucose oxidase by acrylonitrile copolymer coated silica supports. J. Mol. Catal. B-Enzym., 2006, 38, 59–64.
  • 14. Goradia D., Cooney J., Hodnett B.K., Magner E., The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. J. Mol. Catal. B-Enzym., 2005, 32, 231–239.
  • 15. Greenberg D.M., Plant proteolytic enzymes. 1967, in: Methods in Enzymology, Vol. 2 (eds. S.P. Colowick, N.O. Kaplan). Academic Press, New York, pp. 54–59.
  • 16. Gupta M.N., Thermostabilization of proteins. Biotechnol. Appl. Biochem., 1991, 14, 1–11.
  • 17. Han X-Q., Shahidi F., Extraction of harp seal gastric proteases and their immobilization on chitin. Food Chem., 1995, 52, 71––76.
  • 18. Haque Z.U. Mozaffar Z., Casein hydrolyzate I continuous production using enzyme bioreactors. Food Hydrocoll., 1992, 5, 549–557.
  • 19. Jiang B., Zhang, Y., Immobilization of catalase on crosslinked polymeric hydrogels effect of anion on the activity of immobilized enzyme. Eur. Polym. J., 1993, 29, 1251–1254.
  • 20. Kermasha S., Gaffar R., Bisakowski B., Biocatalysis of silica gel-immobilized chlorophyllase in a ternary micellar system. Process Biochem., 2000, 35, 1103–1109.
  • 21. Kondo A., Murakami F., Kawagoe M., Higashitani K., Kinetic and circular dichroism studies of enzymes adsorbed on ultrafine silica particles. Appl. Microbiol. Biotechnol., 1993, 9, 726–731.
  • 22. Kumar A., Gupta M.N., Immobilization of trypsin on an enteric polymer Eudragit S-100 for the biocatalysis of macromolecular substrate. J. Molec. Cat. B: Enzymatic, 1998, 5, 289–294.
  • 23. Kurimoto E., Harada T., Akiyama A., Sakai T., Kato, K., In vitro refolding porcine pepsin immobilized on agarose beads. J. Biochem., 2001, 130, 295–297.
  • 24. Li S., Hu J., Liu B., Use of chemically modified PMMA microspheres for enzyme immobilization. Biosystems, 2004, 77, 25–32.
  • 25. Malcata F.X., Reyes H.R., Garcia H.S., Hill C.G., Amundson C.H., Immobilized lipase for modification of fats and oils. J. Am. Oil Chem. Soc., 1990, 67, 890–912.
  • 26. Mashaly R.I., Saad M.H., El-Abassy F., Wahba A.A., Coagulation of milk by calf rennet, pepsin and Mucor miehei rennet immobilized on large agarose beads. Milchwissenschaft, 1988, 43, 79–82.
  • 27. Nagata N., Kubota L.T., Bueno M.I., Peralta-Zamora P.G., Adsorption parameters of Cd (II), Pb (II) and Hg (II) on Zirconium (IV) phosphate chemically grafted onto silica gel surface. J. Colloid Interface Sci., 1998, 200, 121–125.
  • 28. Ohnistti S.T. Barr J.K., A simplified method of quantitating protein. The Biuret and phenol reagents. Anal. Biochem., 1978, 86, 193–200.
  • 29. Shah B., Kumar S.R., Devi S., Immobilized proteolytic enzymes on resinous materials and their use in milk clotting. Process Biochem., 1995, 30, 63–68.
  • 30. Sharma S., Kaur P., Jain A., Rajeswari M.R., Gupta M.N., A smart bioconjugate of chymotrypsin. Biomacromolecules, 2003, 4, 330–336.
  • 31. Ticu F.L., Marko D.V., Froidevaux R., Huma A., Artenie V., Guillochon D., Use of protease-modified-alumina complex to design a continuous stirred tank reactor for producing bioactive hydrolysates. Process Biochem., 2005, 40, 2841–2848.
  • 32. Tischer W., Kasche V., Immobilized enzymes: crystals or carriers?. Trends Biotechnol., 1999, 17, 326–335.
  • 33. Zhang Z., He Z., He M., Stabilization mechanism of MPEG modified trypsin based on thermal inactivation kinetic analysis and molecular modeling computation. J. Mol. Catal. B-Enzym., 2001, 14, 85–94.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb1b2709-79a2-4d83-b835-6343bfe0d93d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.