PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 75 |

Tytuł artykułu

Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Climatic parameters are the main environmental factors affecting tree growth. The main aim of the presented study was to determine whether different oak species growing under contrasting environmental conditions show different sensitivity to climatic parameters. Four oak stands with Quercus robur, Quercus petraea, Quercus polycarpa and Quercus dalechampii growing in the same area were evaluated. Standard dendrochronological methods were used for sample preparation, ring width measurements, cross-dating, chronology development, and the assessment of growth-climate response patterns. Although the species grew under different environmental conditions, their local tree-ring chronologies are highly correlated. The radial growth responses to climatic parameters differ slightly, but the response depends more on local site conditions than on the oak species. At the same time, the strongest correlations between radial growth and climatic parameters were identical among species and sites. The amount of water available in the soil was the main climate-dependent factor limiting radial growth. Approximately since the 1990s, the distribution of rainfalls within the growing season has changed at the expense of spring precipitation. The significance of relative soil moisture content during spring for oak growth increased and the significance of summer values decreased.

Wydawca

-

Czasopismo

Rocznik

Tom

75

Opis fizyczny

p.55-65,fig.,ref.

Twórcy

autor
  • Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelská 3, 613 00 Brno, Czech Republic
  • Global Change Research Institute, the Czech Academy of Science, Belidla 986/4a, 603 00 Brno, Czech Republic
autor
  • Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
autor
  • Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
autor
  • Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
autor
  • Department of Agrosystems and Bioclimatology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
  • Global Change Research Institute, the Czech Academy of Science, Belidla 986/4a, 603 00 Brno, Czech Republic
autor
  • Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelská 3, 613 00 Brno, Czech Republic
  • Global Change Research Institute, the Czech Academy of Science, Belidla 986/4a, 603 00 Brno, Czech Republic

Bibliografia

  • Affolter P, Büntgen U, Esper J, Rigling A, Weber P, Luterbacher J & Frank D (2010) Inner Alpine conifer response to 20th century drought swings. European Journal of Forest Research 129: 289–298.
  • Allen RG, Pereira LS, Raes D & Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome 300: D05109.
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A & Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684.
  • Baillie MGL & Pilcher JR (1973) A simple crossdating program for tree-ring research. Tree-Ring Bulletin 33: 7–14.
  • Barbaroux C & Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology 22: 1201–1210.
  • Bauer Z, Trnka M, Bauerová J, Možný M, Štěpánek P, Bartošová L & Žalud Z (2010) Changing climate and the phenological response of great tit and collared flycatcher populations in floodplain forest ecosystems in Central Europe. International Journal of Biometeorology 54: 99–111.
  • Biondi F & Waikul K (2004) DendroClim2002: AC++ program for statistical calibration of climate signals in tree ring chronologies. Computers and Geosciences 30: 303–311.
  • Bošeľa M, Sedmák R, Marušák R, Sedmáková D, Petráš R & Barna M (2014) Evaluating similarity of radial increments around tree stem circumference of European beech and Norway spruce from Central Europe. Geochronometria 41: 136–146.
  • Brázdil R, Trnka M, Dobrovolný P, Chromá K, Hlavinka P & Žalud Z (2009) Variability of droughts in the Czech Republic, 1881–2006. Theoretical and Applied Climatology 97: 297–315.
  • Büntgen U, Trouet V, Frank D, Leuschner HH, Friedrichs D, Luterbacher J & Esper J (2010) Tree-ring indicators of German summer drought over the last millennium. Quaternary Science Reviews 29: 1005–1016.
  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner K-U, Wanner H, Luterbacher J & Esper J (2011) 2500 years of European climate variability and human susceptibility. Science 331: 578–582.
  • Cedro A (2007) Tree-ring chronologies of downy oak (Quercus pubescens), pedunculate oak (Q. robur) and sessile oak (Q. petraea) in the Bielinek Nature Reserve: Comparison of the climatic determinants of tree-ring width. Geochronometria 26: 39–45.
  • Charru M, Seynave I, Morneau F & Bontemps J-D (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecology and Management 260: 864–874.
  • Čufar K, Grabner M, Morgos A, Martinez del Castillo E, Merela M & De Luis M (2014) Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28: 1267–1277.
  • Dostál J (1989) Nová květena ČSSR. Academia, Praha.
  • Eckstein D & Bauch J (1969) Beitrag zur rationalisierung eines dendrochronologischen verfahrens und zur analyse seiner aussagesicherheit. Forstwissenschaftliches Centralblatt 88: 230–250.
  • Feuillat F, Dupouey JL, Sciama D & Keller R (1997) A new attempt at discrimination between Quercus petraea and Quercus robur based on wood anatomy. Canadian Journal of Forest Research 27: 343–351.
  • Friedrichs D, Büntgen U, Esper J, Frank D, Neuwirth B & Löffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiology 29: 39–51.
  • Fritts HC, Mosimann JE & Bottorff CP (1969) A revised computer program for standardizing tree-ring series. Tree-Ring Bulletin 29: 15–20.
  • Fritts HC (1976) Tree rings and climate. Academic Press, London, New York, San Francisco.
  • Fritts HC & Swetnam TW (1989) Dendroecology: A tool for evaluating variations in past and present forest environments. Advances in Ecological Research 19: 111–188.
  • Gillner S, Vogt J & Roloff A (2013) Climatic response and impacts of drought on oaks at urban and forest sites. Urban Forestry and Urban Greening 12: 597–605.
  • Gričar J (2010) Xylem and phloem formation in sessile oak from Slovenia in 2007. Wood Research 55: 15–22.
  • Grissino-Mayer HD, Holmes R & Fritts HC (1992) International tree–ring data bank program library. Version 1.1. Laboratory of Tree–Ring Research, University of Arizona, Tucson.
  • Hlavinka P, Trnka M, Balek J, Semerádová D, Hayesc M, Mark Svobodac M, Eitzingerd J, Možnýe M, Fischera M, Huntc E & Žaluda Z (2011) Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agricultural Water Management 98: 1249-1261.
  • Hlavinka P, Trnka M, Semerádová D, Dubrovský M, Žalud Z & Možný M (2009) Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology 149: 431–442.
  • Holmes RL, Adams RK & Fritts HC (1986) Tree–ring chronologies of western North America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN. Chronology Series VI. Laboratory of Tree – Ring Research, University of Arizona, Tuscon.
  • Hollstein E (1980) Mitteleuropäische eichenchronologie. Trierer dendrochronologische forschungen zur archäologie und kunstgeschichte. Trierer Grabungen und Forschungen. Mainz am Rhein.
  • Horáček P, Šlezingerová J & Gandelová L (2003) Analysis of cambial activity and formation of wood in Quercus robur L. under conditions of a floodplain forest. Journal of Forest Science 49: 412–418.
  • Hroš M & Vavrčík H (2014) Comparison of earlywood vessel variables in the wood of Quercus robur L. and Quercus petraea (Mattuschka) Liebl. growing at the same site. Dendrochronologia 32: 284–289.
  • Jovanovič B (2000) Dendrologija. Belgrade University, Belgrade.
  • Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A & Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901-2008. Climatic Change 115: 343–363.
  • Koblížek J (1990) Quercus L.: Květena ČR 2 (ed. by S Hejný & B Slavík) Academia, Praha, pp. 21–35.
  • Kolář T, Kyncl T & Rybníček M (2012a) Oak chronology development in the Czech Republic and its teleconnection on a European scale. Dendrochronologia 30: 243–248.
  • Kolář T, Gryc V, Rybníček M & Vavrčík H (2012b) Anatomical Analysis and Species Identification of Subfossil Oak Wood. Wood Research 57: 251–264.
  • Kolář T, Rybníček M & Tegel W (2013) Dendrochronological evidence of cockchafer (Melolontha sp.) outbreaks in subfossil tree-trunks from Tovačov (CZ Moravia). Dendrochronologia 31: 29–33.
  • Lebourgeois F, Cousseau G & Ducos Y (2003) Étude d’une chênaie sessiliflore exceptionnelle: la futaie des Clos (Sarthe). Revue forestière française 55: 333–346.
  • Magic D (2006) Quercus L.: Flóra Slovenska V/3 (ed. by K Goliášová K & N Michálková) Veda, Bratislava.
  • Matyas V (1971) Short taxonomic review of the oaks of Hungary. Erdészeti Kutatàsok Budapest 67: 55–68.
  • Mérian P, Bontemps JD, Bergès L & Lebourgeois F (2011) Spatial variation and temporal instability in climate-growth relationships of sessile oak (Quercus petraea [Matt.] Liebl.) under temperate conditions. Plant Ecology 212: 1855–1871.
  • Mérian P & Lebourgeois F (2011) Size-mediated climate–growth relationships in temperate forests: A multi-species analysis. Forest Ecology and Management 261: 1382–1391.
  • Michelot A, Breda N, Damesin C & Dufrene E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management 265: 161–171.
  • Možný M, Tolasz R, Nekovář J, Sparks T, Trnka M & Žalud Z (2009) The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agricultural and Forest Meteorology 149: 913–919.
  • Možný M, Brázdil R, Dobrovolný P & Trnka M (2012) Cereal harvest dates in Czech Republic between 1501 and 2008 as proxy for March-June temperature reconstruction. Climatic Change 110: 801–821.
  • Olesen JE, Børgesen CD, Elsgaard L, Palosuo T, Rötter RP, Skjelvåg AO, Peltonen-Sainio P, Börjesson T, Trnka M, Ewert F, Siebert S, Brisson N, Eitzinger J, van Asselt ED, Oberforster M & van der Fels-Klerx HJ (2012) Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additive and Contaminants 29: 1527–1542.
  • Parry ML (2000) Assessment of potential effects and adaptation for climate change in Europe: The Europe ACACIA Project. Jackson Environment Institute, University of East Anglia, Norwich, United Kingdom.
  • Petráš R & Mecko J (2011) Effect of climatic factors on the dynamics of radial increments of Norway spruce, European beech and sessile oak. Journal of Forest Science 57: 293–302.
  • Popa I, Leca S, Crăciunescu A, Sidor C & Badea O (2013) Dendroclimatic response variability of Quercus species in the Romanian intensive forest monitoring network. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41: 326–332.
  • Požgaj J & Horváthová J (1986) Variabilita a ekológia druhov rodu Quercus L. na Slovensku. Veda, Bratislava.
  • Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R & Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19: 229–240.
  • Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Annals of Forest Science 62: 209–218.
  • Rybníček M, Čermák P, Žid T & Kolář T (2010a) Radial growth and health condition of Norway spruce (Picea abies (L.) Karst.) stands in relation to climate (Silesian Beskids, Czech Republic). Geochronometria 36: 9–16.
  • Rybníček M, Koňas P & Kolář T (2010b) The benefits of tree-ring curves detrending for dating archaeological wood. Geochronometria 35: 85–90.
  • Rybníček M, Čermák P, Hadaš P, Kolář T & Žid T (2012a) Dendrochronological analysis and habitual stress diagnostic assessment of Norway spruce (Picea abies) stands in the Drahany highlands. Wood Research 57: 189–206.
  • Rybníček M, Čermák P, Žid T & Kolář T (2012b) Growth responses of Picea abies to climate in the central part of the Českomoravská Upland (Czech Republic). Dendrobiology 68: 21–30.
  • Rybníček M, Čermák P, Žid T, Kolář T, Trnka T & Büntgen U (2015) Exploring growth variability and crown vitality of sessile oak (Quercus petraea) in the Czech Republic. Geochronometria 42: 17–27.
  • Sanders TGM, Pitman R & Broadmeadow MSJ (2014) Species-specific climate response of oaks (Quercus spp.) under identical environmental conditions. iForest 7: 61–69.
  • Seneviratne SI, Luthi D, Litschi M & Schar C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443: 205–209.
  • Šíma P (2007) Květena východní části Českého krasu. Bohemia centralis 28: 117–202.
  • Šmelko Š & Wolf J (1977) Štatistické metódy v lesníctve. Príroda, Bratislava.
  • Štěpánek P (2007) ProClimDB – software for processing climatological datasets. CHMI, regional office Brno. Available from: http://www.climahom.eu/ProcData.html
  • Tegel W, Vanmoerkerke J & Büntgen U (2010) Updating historical tree-ring records for climate reconstruction. Quaternary Science Reviews 29: 1957–1959.
  • Thomas FM, Blank R & Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 32: 277–307.
  • Tolasz R (2007) Atlas podnebí Česka. Český hydrometeorologický ústav, Univerzita Palackého v Olomouci, Olomouc, Praha.
  • Trnka M, Kyselý J, Možný M & Dubrovský M (2009a) Changes in Central-European soil-moisture availability and circulation patterns in 1881–2005. International Journal of Climatology 29: 655–672.
  • Trnka M, Dubrovský M, Svoboda M, Semerádová D, Hayes M, Žalud Z & Wilhite D (2009b) Developing Regional Drought Climatology for the Czech Republic. International Journal of Climatology 29: 863–883.
  • Trnka M, Olesen JE, Kersebaum KC, Skjelvag AO, Eitzinger J, Seguin B, Peltonen-Sainio P, Rötter R, Iglesias A, Orlandini S, Dubrovsky M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Gobin A, Vucetic V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Kozyra J, Alexandrov V, Semeradova D & Zalud Z (2011) Agroclimatic conditions in Europe under climate change. Global Change Biology 17: 2298–2318.
  • Trnka M, Brázdil R, Olesen JE, Eitzinger J, Zahradníček P, Kocmánková E, Dobrovolný P, Štěpánek P, Možný M, Bartošová L, Hlavinka P, Semerádová D, Valášek H, Havlíček M, Horáková V, Fischer M & Žalud Z (2012) Could the changes in regional crop yields be a pointer of climatic change? Agricultural and Forest Meterology 166: 62–71.
  • Trnka M, Kersebaum KC, Eitzinger J, Hayes M, Hlavinka P, Svoboda M, Dubrovský M, Semerádová D, Wardlow B, Pokorný E, Možný M, Wilhite D & Žalud Z (2013) Consequences of climate change for the soil climate in Central Europe and the central plains of the United States. Climatic Change 120: 405–418.
  • Trnka M, Brázdil R, Možný M, Štěpánek P, Dobrovolný P, Zahradníček P, Balek J, Semerádová D, Dubrovský M, Hlavinka P, Eitzinger J, Wardlow B, Svoboda M, Hayes M, Žalud Z (2015) Soil moisture trends in the Czech Republic between 1961 and 2012. International Journal of Climatology 35: 3733–3747.
  • Vanassche J (2011) Sap flow dynamics in sessile oak during drought stress events in the Czech Republique: 1976–1977 and 2007–2008 [dissertation]. Universiteit Gent, Gent.
  • Viewegh J, Kusbach A & Mikeska M (2003) Czech forest ecosystem classification. Journal of Forest Science 49: 85–93.
  • Ważny T, Lorentzen B, Köse N, Akkemik Ü, Boltryk Y, Güner T, Kyncl J, Kyncl T, Nechita C, Sagaydak S & Vasileva JK (2014) Bridging the gaps in tree-ring records: creating a high-resolution dendrochronological network for southeastern Europe. Radiocarbon 56: 39–50.
  • Wigley TML, Briffa KR & Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213.
  • Wilson R, Miles D, Loader NJ, Melvin T, Cunningham L, Cooper R & Briffa K (2012) A millennial long March–July precipitation reconstruction for southern-central England. Climate Dynamics 40: 997–1017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eae49403-3d91-408a-a3ff-6cd5ede1dcbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.