PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 4 |

Tytuł artykułu

Applying Artificial Neural Networks for the estimation of Chlorophyll-a concentrations along the Istanbul Coast

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Chlorophyll-a (chl-a) concentration is considered to be the main measure of phytoplankton biomass. The location and intensity of the surface chl-a maximum in a coastal area are governed by daylight hours, air and seawater temperatures, and nutrient availability in the euphotic zone. The aim of this study is to model a back-propagation neural network (BP-ANN) for estimating chlorophyll-a concentrations from obtained input values. In this study an ANN structure of 3 input neurons and 1 output neuron is used. The 3 inputs represent sea surface temperature (SST), air temperature, and daylight hours, while the output represents chl-a concentration respectively and hidden layers number which is dependent to the application is determined as 20. The ANN structure, which is simulated in MATLAB, estimated the data of the experiments. When compared to current data, it can be said that these are successful results and they provide ANN for estimating chl-a. In our ANN approach, the effects of all input/output parameters can be evaluated and various outputs can be obtained for different environments and predicted maximum chl-a data.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

4

Opis fizyczny

p.1281-1287,fig.,ref.

Twórcy

autor
  • Computer Engineering Department, Engineering Faculty, Istanbul University, 34320, Avcilar, Istanbul, Turkey
autor
  • Environmental Engineering Department, Engineering Faculty, Istanbul University, 34320, Avcilar, Istanbul, Turkey
autor
  • Computer Engineering Department, Engineering Faculty, Istanbul University, 34320, Avcilar, Istanbul, Turkey
  • Environmental Engineering Department, Engineering Faculty, Istanbul University, 34320, Avcilar, Istanbul, Turkey

Bibliografia

  • 1. AGIRBAS E. Interaction of pigment concentration and pri­mary production with environmental condition in the Southeastern Black Sea, PhD Thesis. Karadeniz Technical University. Trabzon, 2010 [In Turkish]
  • 2. KAYAALP T., POLAT S. Estimation of Chlorophyll-a for Full Completed and Incompleted Regression Model, E.U. Journal of Fisheries & Aquatic Sciences, 18, (3-4), 529, 2001 [In Turkish].
  • 3. SIVRI N., SEKER D.Z., BALKIS N., ZAN A. Analysis Of Chlorophyll-a Distribution On The South-Western Coast Of Istanbul During 2008-2010 Using GIS. FEB. 21, (11), 3233, 2012.
  • 4. MAQSOOD I., KHAN M. R., ABRAHAM A. An ensemble of neural networks for weather forecasting. Neural Comput. Appl. 13, (2), 112, 2004.
  • 5. HAYATI M., MOHEBI Z. Application of artificial neural networks for temperature forecasting. World Academy of Science, Engineering and Technology. 28, (2), 275, 2007.
  • 6. HAYATI M., MOHEBI Z. Temperature Forecasting Based on Neural Network Approach.World Applied Sciences Journal. 2, (6), 613, 2007.
  • 7. BABOO S. S., SHEREEF I. K. An efficient weather fore­casting system using artificial neural network. International Journal of Environmental Science and Development. 1, (4), 2010, 2010.
  • 8. MIYANO T., GIROSI F. Forecasting Global Temperature Variations by Neural Networks, (No. AIM-1447), Massachusetts Institute Of Technology Cambridge Artificial Intelligence Lab, 1994.
  • 9. SIVRI N., KILIC N., UCAN O. N. Estimation of stream temperature in Firtina Creek (Rize-Turkiye) using artifi­cial neural network model. J. Environ. Biol. 28, (1), 67, 2007.
  • 10. SIVRI N., OZCAN H., UCAN O., AKINCILAR O. Estimation of Stream Temperature in Degirmendere River (Trabzon-Turkey) Using Artificial Neural Network Model. Turkish Journal of Fisheries And Aquatic Sciences. 9, (2), 145, 2009.
  • 11. MOZEJKO J., GNIOT R. Application of Neural Networks for the Prediction of Total Phosphorus Concentrations in Surface Waters. Pol. J. Environ. Stud. 17, (3), 363, 2008.
  • 12. GENCOGLU M. T., CEBECI M. Investigation of pollution flashover on high voltage insulators using artificial neural network. Expert Syst. Appl. 36, (4), 7338, 2009.
  • 13. WU G. D., LO S. L. Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system. Eng. Appl. Artif. Intel. 21, (8), 1189, 2008.
  • 14. SUDHEER K. P., CHAUBEY I., GARG V. Lake Water Quality Assessment From Landsat Thematic Mapper Data Using Neural Network: An Approach To Optimal Band Combination Selection. J. Am. Water Resour. As. 42, (6), 1683, 2006.
  • 15. BARAI S. V., DIKSHIT A. K., SHARMA S. Neural net­work models for air quality prediction: a comparative study. In Soft Computing in Industrial Applications. Springer: Berlin, Heidelberg, pp. 290-305, 2007.
  • 16. NAGENDRA S. S., KHARE M. Modelling urban air quali­ty using artificial neural network. Clean Technologies and Environmental Policy. 7, (2), 116, 2005.
  • 17. PARSONS T. R., MAITA Y., LALLI C. Manual of Chemical and Biological Methods for Sea Water Analysis, Pergamon Press, Great Britain, 1984.
  • 18. SINHA K., CHOWDHURY S., DAS SAHA P., DATTA S. Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response sur­face methodology (RSM) and artificial neural network (ANN). Ind. Crop. Prod. 41, 165, 2013.
  • 19. BHATTI M.S., KAPOOR D., KALIA R.K., REDDY A.S., THUKRAL A.K. RSM and ANN modeling for electrocoag­ulation of copper from simulated wastewater: Multi objec­tive optimization using genetic algorithm approach. Desalination. 274, 74, 2011.
  • 20. CALLAN R. The essence of neural networks. Southampton Institute, Prentice Hall Europe, 1999.
  • 21. YEGNANARAYANA B. Artificial Neural Networks. Prentice-Hall of India, 2006.
  • 22. WACKERLY D., SCHEAFFER W. Mathematical Statistics with Applications. Thomson Higher Education, 2008.
  • 23. OKAFOR N. Environmental Microbiology of Aquatic and Waste Systems, Springer, New York, 307, 2011.
  • 24. SIGEE D.C. Freshwater Microbiology, Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environ-ment, John Wiley & Sons Inc., USA, 541, 2005.
  • 25. SAILA S., CHEESEMAN M., POYER D. Maximum Stream temperature estimation from air temperature data and its relationship to Brook Trout (Salvelinus fontinalis) Habitat requirements in Rhode Island. Wood Pawcatuck watershed association (WPWA), 2004.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eaccff09-1fd8-45ae-9429-6c7127bf7ea6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.