PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 79 |

Tytuł artykułu

Climatic sensitivity of Quercus robur L. in floodplain near Kyiv under river regulation

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Climate change has a significant impact on natural ecosystems, particularly on floodplain forests that are among the most transformed ecosystems in the world. The climate sensitivity of dominant species is likely to play a key role in determining the susceptibility of flooded forests to climate changes. Here, we use dendrochronological approaches and local climate records from 1880 to 2015 to assess the response in pedunculate oak (Quercus robur L.) trees growing in a floodplain of the Dnipro River near Kyiv to climatic variables. Correlation analysis reveals the strongest positive association of the Q. robur tree-ring width chronology with May–June precipitation, May–June temperature, and May self-calibrating Palmers drought severity indices (scPDSI). The moving-window correlation analysis points to positive association with the scPDSI after the 1950s, when local river regulation was implemented. The positive correlation with current March precipitation is the least expected change in the oak growth-to-climate relationship that occurred in the aftermath of human alterations in the local river and regional climate changes. This study discusses the probable ecological consequences and ecophysiological mechanisms of observable climate-to-growth relationships and their temporal stability.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Opis fizyczny

p.20–33,fig.,ref.

Twórcy

Bibliografia

  • Agafonov LI & Gurskaya MA (2013) The influence of the lower Ob River runoff on radial growth of trees. Contemporary Problem of Ecology 6: 779–787.
  • Astrade L & Begin Y (1997) Tree-ring response of Populus tremula L. and Quercus robur L. to recent spring floods of the Saone River, France. Ecoscience 4: 232–239.
  • Barbaroux C & Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology 22: 1201–1210.
  • Bauer Z, Trnka M, Bauerová J, Možný M, Štěpánek P, Bartošová L & Žalud Z (2010) Changing climate and the phenological response of great tit and collared flycatcher populations in floodplain forest ecosystems in Central Europe. International Journal of Biometeorology 54: 99–111.
  • Bednarz Z & Ptak J (1990) The influence of temperature and precipitation on ring widths of oak (Quercus robur L.) in the Niepolomice forest near Cracow, southern Poland. Tree-Ring Bullettin 50: 1–9.
  • Brosofske KD, Chen J, Naiman RJ & Franklin JF (1997) Harvesting effects on microclimatic gradients from small streams to uplands in western Washington. Ecological Applications 7: 1188–1200.
  • Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28: 251–258.
  • Capon SJ, Chambers LE, Mac Nally R, Naiman RJ, Davies P, Marshall N, Pittock J, Reid M, Capon T, Douglas M, Catford J, Baldwin DS, Stewardson M, Roberts J, Parsons M & Williams SE (2013) Riparian ecosystems in the 21st century: hotspots for climate change adaptation? Ecosystems 16: 359–381.
  • Čater M & Levanič T (2015) Physiological and growth response of Quercus robur in Slovenia. Dendrobiology 74: 3–12.
  • Cedro A & Nowak G (2015) Dendroclimatic investigations on Quercus rubra and Quercus robur in north-western Poland. Dendrobiology 74: 123–133.
  • Čejková A & Poláková S (2012) Growth responses of sessile oak to climate and hydrological regime in the Zbytka Nature Reserve, Czech Republic. Geochronometria 39: 285–294.
  • Copini P, den Ouden J, Robert EMR, Tardif JC, Loesberg WA, Goudzwaard L & Sass-Klaassen U (2016) Flood-ring formation and root development in response to experimental flooding in young Quercus robur trees. Frontiers in Plant Science 7: e775.
  • Čufar K, Grabner M, Morgós A, Martínez del Castillo E, Merela M & de Luis M (2014) Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28: 1267–1277.
  • Danehy RJ & Kirpes BJ (2000) Relative humidity gradients across riparian areas in eastern Oregon and Washington forests. Northwest Science 74: 224–233.
  • Didukh YaP & Aloshkina UM (2012) Biotops of Kyiv. NaUKMA, Agrar Media Group, Kyiv.
  • Drobyshev I, Niklasson M, Eggertsson O, Linderson H & Sonesson K (2008) Influence of annual weather on growth of pedunculate oak in southern Sweden. Annals of Forest Science 65: e512.
  • Elisson E, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, van Noordwijk M, Creed IF, Pokorny J, Gaveau D, Spracklen DV, Tobella AB, Ilstedt U, Teuling AJ, Gebrehiwot SG, Sands DC, Muys B, Verbist B, Springgay E, Sugandi Y & Sullivan CA (2017) Trees, forests and water: Cool insights for a hot world. Global Environmental Change. 43: 51–61.
  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A & Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4: 222–227.
  • Ferner E, Rennenberg H & Kreuzwieser J (2012) Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Tree Physiology 32: 135–145.
  • Fonti P & García-González I (2008) Earlywood vessel size of oak as potential proxy for spring precipitation in mesic sites. Journal of Biogeography 35: 2249–2257.
  • Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B & Löffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiology 29: 39–51.
  • García González I & Ekstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23: 497–504.
  • García-Suárez AM, Butler CJ & Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27: 183–198.
  • Gershunov A, Schneider N & Barnett T (2001) Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: Signal or noise? Journal of Climate 14: 2486–2492.
  • Glenz C, Schlaepfer R, Iorgulescu I & Kienast F (2006) Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management 235: 1–13.
  • Goršić E (2014) Response of pedunculate oak in Balkan floodplain forests to drought. STSM Scientific Report, Ljubljana, Slovenia.
  • Gren I-M, Groth K-H & Sylven M (1995) Economic values of Danube Floodplains. Journal of Environmental Management 45: 333–345.
  • Gričar J, de Luis M, Hafner P & Levanič T (2013) Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees 27: 1669–1680.
  • Hadaš P (2003) Temperature and humidity conditions of the floodplain forest with respect to stand microclimate and mesoclimate. Ekológia (Bratislava) 22: 19–46.
  • Hafner P, Gričar J, Skudnik M & Levanič T (2015) Variations in environmental signals in tree-ring indices in trees with different growth potential. Plos One 10: e0143918.
  • Hesslerová P, Pokorný J, Brom J & Rejšková–Procházková A (2013) Daily dynamics of radiation surface temperature of different land cover types in a temperate cultural landscape: consequences for the local climate. Ecological Engineering 54: 145–154.
  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • Hroš M & Vavrčík H (2014) Comparison of earlywood vessel variables in the wood of Quercus robur L. and Quercus petraea (Mattuschka) Liebl. growing at the same site. Dendrochronologia 32: 284–289.
  • Kaminski B, Miler AT, Okonski B, Grajewski S & Schwartz K (2011) Floodplain forest technical and monitoring solutions for protection of the Uroczysko Warta floodplain forest. Polish Journal of Environmental Studies 5: 1193–1201.
  • Kern Z, Patkó M, Kázmér M, Fekete J, Kele S & Pályi Z (2013) Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quaternary International 293: 257–267.
  • Klimo E (1998) History, condition and management of floodplain forest ecosystems in Europe. Environmental Forest Science 54: 173–186.
  • Kreuzwieser J, Papadopoulou E & Rennenberg H (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biology 6: 299–306.
  • Kundzewicz ZW (2008) Climate change impacts on the hydrological cycle. Ecohydrology & Hydrobiology 8: 195–203.
  • Land A (2014) Holzanatomische veränderungen als reaktion auf extreme umweltereignisse in rezenten und subfossilen eichen und deren verifizierungim experiment. Doktorgrades der Naturwissenschaften (Dr.rer.nat.), Universität Hohenheim, Hohenheim.
  • Lévy G, Lefévre Y, Becker M, Frochot H, Picard JF, Wagner PA & Aussenac G (1999) Excess water: effects on growth of oak. Special Issue. Fonctionnement des arbres et écosystèmes forestiers. Avancées récentes et consequences sylvicoles. Revue Forestière Française 51: 151–161.
  • Matisons R & Dauškane I (2009) Influence of climate on earlywood vessel formation of Quercus robur at its northern distribution range in central regions of Latvia. Acta Universitatis Latviensis 753: 49–58.
  • Matisons R, Elferts D & Brumelis G (2013) Pointer years in tree-ring width and earlywood-vessel area time series of Quercus robur – relation with climate factors near its northern distribution limit. Dendrochronologia 31: 129–139.
  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schädler B, Schulla J & Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic Change 49: 105–128.
  • Morid R, Delavar M, Eagderi S & Kumar L (2016) Assessment of climate change impacts on river hydrology and habitat suitability of Oxynoemacheilus bergianus. Case study: Kordan River, Iran. Hydrobiologia 771: 83–100.
  • Netsvetov M, Sergeyev M, Nikulina V, Korniyenko V & Prokopuk Y (2017) The climate to growth relationship of pedunculate oak in steppe. Dendrochronologia 44: 31–38.
  • Palmer WC (1965) Meteorological drought. Research Paper № 45, U.S. Weather Bureau, Washington, D.C.
  • Pérez-de-Lis G, García-González I, Rozas V & Olano JM (2016a) Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks. Biogeosciences 13: 5499–5510.
  • Pérez-de-Lis G, Olano JM, Rozas V, Rossi S, Vázquez-Ruiz RA & García-González I (2017) Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Functional Ecology 31: 592–603.
  • Pérez-de-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V & García-González I (2016b) Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist 209: 521–530.
  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE & Stromberg JC (1997) The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.
  • Politti E, Egger G, Angermann K, Rivaes R, Blamauer B, Klösch M, Tritthart M & Habersack H (2014) Evaluating climate change impacts on Alpine floodplain vegetation. Hydrobiologia 737: 225–243.
  • Pritzkow C, Wazny T, Heußner KU, Słowiński M, Bieber A, Dorado Liñáne I, Helle G & Heinrich I (2016) Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robur) in N-Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 449: 520–530.
  • R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  • Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Annals of Forest Science 62: 209–218.
  • Rozas V & García-Gonzáles I (2012) Non-stationary influence of El Niño-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. International Journal of Biometeorology 56: 787–800.
  • Santini A, Bottacci A & Gellini R (1994) Preliminary dendroecological survey on pedunculate oak (Quercus robur L.) stands in Tuscany (Italy). Annales des Sciences forestières 51: 1–10.
  • Sass-Klaassen U, Sabajo CR & den Ouden J (2011) Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29: 171–175.
  • Scharnweber T, Manthey M & Wilmking M (2013) Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiology 33: 425–437.
  • Schneider C, Laizé CLR, Acreman MC & Flörke M (2013) How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences 17: 325–339.
  • Schnitzler A, Brack WH & Esther A (2005) Biodiversity of floodplain forests in Europe and eastern North America: a comparative study of the Rhine and Mississippi Valleys. Biodiversity and Conservation 14: 97–117.
  • Siebel HN, Van Wijk M & Blom CWPM (1998) Can tree seedlings survive increased flood levels of rivers? Acta Botanica Neerlandica 47: 219–230.
  • Sperry JS, Meinzer FC & McCulloh KA (2008) Safety and efficiency conflict in hydraulic architecture: scaling form tissues to trees. Plant, Cell & Environment 31: 632–645.
  • Stella JC, Riddle J, Piégay H, Gagnage M & Trémélo M-L (2013) Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river. Geomorphology 202: 101–114.
  • Stojanović DB, Levanić T, Matović B & Orlović S (2015a) Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. European Journal of Forest Research 134: 555–567.
  • Stojanović D, Levanić T, Matović B & Bravo-Oviedo A (2015b) Climate change impact on a mixed lowland oak stand in Serbia. Annals of Silvicultural Research 39: 94–99.
  • Ström L, Jansson R, Nilsson C, Johansson ME & Xiong S (2011) Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology 17: 254–267.
  • Stuijfzand S, Ek EV, Manen HV, Hommel PWFM, Waal RWD, Pol JVD, Daling J, Pelsma T, Belien E, Olsthoorn A, Sass-Klaassen U, den Ouden J, Kuijper M & van Rooij S (2008) Onderzoek naar Effecten van Waterberging in een Jong Kleibos: Achtergrondrapport Harderbos, Alterra rapport 1630, RWSW aterdienst rapport 2007.015. http://edepot.wur.nl/41610.
  • Tatin-Froux F, Capelli N & Parelle J (2014) Cause-effect relationship among morphological adaptations, growth, and gas exchange response of pedunculate oak seedlings to waterlogging. Annals of Forest Science 71: 363–369.
  • Tumajer J & Treml V (2016) Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management 379: 185–194.
  • Turner MG, Gergel SE, Dixon MD & Miller JR (2004) Distribution and abundance of trees in floodplain forests of the Wisconsin River: Environmental influences at different scales. Journal of Vegetation Science 15: 729–738.
  • Vincke C & Delvaux B (2005) Porosity and available water of temporarily waterlogged soils in a Quercus robur (L.) declining stand. Plant and Soil 271: 189–203.
  • Vishnevsky V (2007) Small River Kyiv. Interpress Ltd, Kyiv, Ukraine.
  • Webb RW, Rosenzweig CE & Levine ER (2000) Global Soil Texture and Derived Water-Holding Capacities. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. http://www.daac.ornl.gov.
  • Wells N, Goddard S & Hayes M J (2004) A self-calibrating Palmer Drought Severity Index. Journal of Climate 17: 2335–2351.
  • Zang C & Biondi F (2013) Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia 31: 68–74.
  • Zang C & Biondi F (2015) treeclim: an R package for the numerical calibration of proxy-climate relationshops. Ecography 38: 431–436.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eaa7d7bc-fbf8-4751-ab40-1432822720b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.