PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |

Tytuł artykułu

Microorganisms in soils with high nickel and chromium concentrations in Western Serbia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The occurrence of microorganisms and their relationships with total and available heavy metal concentrations (Cu, Zn, Pb, Cr, Ni, Cd, Hg, and As), as well as main soil chemical characteristics (pH, P, K, Ca, N tot, C org) were evaluated in naturally metalliferous serpentine soils and non-serpentine soils with elevated Ni and Cr concentrations. Significant negative correlations were detected between ammonifiers (r = -0.545, r = -0.371), oligonitrofiles (r = -0.478, r = -0.458), total number of microorganisms (r = -0.363, r = -0.393), and available Ni and Cr. The number of actynomicetes and Azotobacter spp. was not affected by heavy metal concentrations, nor any other soil chemical characteristic. Ammonifiers correlated positively with P and K soil content, but negatively with soil C org. High positive correlations were obtained for available metal concentrations and soil C org and N tot, while soil pHonly correlated with available Cr and As. Stepwise multiple regression analyses indicated that increased Ni and Cr concentrations had overall little influence on microbial groups, and only ammonifiers were significantly affected by increased available Ni, but P content had an even higher effect on their number in soil.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.1663-1671,ref.

Twórcy

  • Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia
autor
  • Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia
  • Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia
  • Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia
  • Soil Science and Conservation Research Institute, Bratislava, Slovak Republic
  • Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia
autor
  • Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia

Bibliografia

  • 1. PANIKOV N.S. Understanding and prediction of soil microbial community dynamics under global change. Appl. Soil Ecol. 11 (2-3), 161, 1999.
  • 2. LOMBARD N., PRESTAT E., VAN ELSAS J.D., SIMONET P. Soil specific limitations for access and analysis of soil microbial communities by metagenomics, FEMS Microbiol. Ecol. 78 (1), 31, 2011.
  • 3. WUANA R.A., OKIEIMEN F.E. Heavy metals in contaminated soils: a review of sources, chemistry, risk and best available strategies for remediation, ISRN Ecol. Article ID 402647, 1, 2011.
  • 4. LENART A., WOLNY-KOŁADKA K. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow. Bull. Environ. Contam. Toxicol. 90 (1), 85, 2013.
  • 5. GILLER K.E., WITTER E., MCGRATH S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30 (10-11), 1389, 1998.
  • 6. OORTS K., GHESQUIERE U., SWINNEN K., SMOLDERS E. Soil properties affecting the toxicity of CuCl₂ and NiCl₂ for soil microbial processes in freshly spiked soils. Environ. Toxicol. Chem. 25 (3), 836, 2006.
  • 7. PARELHO C., RODRIGUES A.S., BARRETO M.C., FERREIRA N.G.C., GARCIA P.V. Assessing microbial activities in metal contaminated agricultural volcanic soils - an integrative approach. Ecotoxicol. Environ. Saf. 129, 242, 2016.
  • 8. KIZILKAYA R., AŞKIN T., BAYRAKLI B., SAĞLAM M. Microbiological characteristics of soils contaminated with heavy metals. Eurasian J. Soil Sci. 40, 95, 2004.
  • 9. RENELLA G., CHAUDRI A.M., FALLOON C.M., LANDI L., NANNIPIERI P., BROOKES P.C. Effects of Cd, Zn, or both on soil microbial biomass and activity in a clay loam soil. Biol. Fertil. Soils 43 (6), 751, 2007.
  • 10. NIEMEYER J.C., LOLATA G.B., DE CARVALHO G .M.,DA SILVA E.M., SOUSA J.P., Nogueira M.A. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl. Soil Ecol. 59, 96, 2012.
  • 11. DENG L., ZENG G., FAN C., LU L., CHEN X., CHEN M., WU H., HE X., HE Y. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl. Microbiol. Biotechnol. 99 (19), 8259, 2015.
  • 12. SCHIPPER L, LEE W. Microbial biomass, respiration and diversity in ultramafic soils of West Dome, New Zealand. Plant Soil 262 (1), 151, 2004.
  • 13. NIKLINSKA M., CHODAK M., LASKOWSKI R. Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl. Soil Ecol. 32, 265, 2006.
  • 14. MRVIĆ V., ZDRAVKOVIĆ M., SIKIRIĆ B., ČAKMAK D., KOSTIĆ-KRAVLJANAC LJ. Harmful and dangerous elements in soils. In: Fertility and content of harmful and dangerous substances in the soils of central Serbia. Mrvić V., Antonović G., Martinović Lj., Eds., Monograph, Institute of Soil Science, Belgrade, Serbia, 75, 2009 [In Serbian].
  • 15. SARIC Z. Practicum in microbiology. Belgrade, Serbia, Academic, 1989 [In Serbian].
  • 16. GOVEDARICA M., JARAK M. Practicum in microbiology, 2nd ed. Novi Sad, Serbia, Faculty of Agriculture, 1996 [In Serbian].
  • 17. VOJINOVIC Z., RADULOVIC V., MODRIC A., STRUNJAK R., PRSA M., PETROVIC V., SARIC Z., TODOROVIC M. Microbiological testing of the soil profile. In Manual for the microbiological analysis of soils and waters, Tesic Z., Todorovic M. Eds., Belgrade, Yugoslavia: Yugoslav Society of Soil Science. 7, 1966.
  • 18. SOLTANPOUR P.N., JOHNSON G.W., WORKMAN S.M, JONES JR. J.B., MILLER R.O. Inductively coupled plasma emission spectrometry and inductively coupled plasma mass spectrometry. In: Methods of Soil Analysis, Sparks D.L. Ed., Part 3. Madison, ASA and SSSA, 91, 1996.
  • 19. BROOKS R.R. Serpentine and its vegetation: a multi-disciplinary approach. Dioscorides, Portland, OR, 1987.
  • 20. CEMPEL M., NIKEL G. Nickel: a review of its sources and environmental toxicology. Polish. J. Environ. Stud. 15 (3), 375, 2006.
  • 21. LI J., HU H.W., MA Y.B., WANG J.T., LIU Y.R., HE J.Z. Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils. Environ. Sci. Pollut. Res. Int. 22, 10496, 2015.
  • 22. HARASIM P., FILIPEK T. Nickel in the environment. J. Elem. 20 (2), 525-534, 2015.
  • 23. OLIVEIRA H. Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. J. Botany. Article ID 375843, 1, 2012.
  • 24. PAL A., DUTTA S., MUKHERJEE P. K., PAUL A.K. Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. J. Basic Microbiol. 45 (3), 207, 2005.
  • 25. RINKLEBE J., ANTIĆ-MLADENOVIĆ S., FROHNE T., STÄRK H.-J., TOMIĆ Z., LIČINA V. Nickel in a serpentine-enriched Fluvisol: Redox affected dynamics and binding forms. Geoderma. 263, 203, 2016.
  • 26. MANDIĆ L., ĐUKIĆ D., STEVOVIĆ V. Microbiological properties of Alumino-Siliceous soil under natural grasslands. Mikrobiologija. 39, 19, 2002.
  • 27. OLIVEIRA A., PAMPULHA M.E. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci. Bioeng. 102 (3), 157, 2006.
  • 28. LANKINEN P., KÄHKÖNEN M.A., RAJASÄRKKÄ J., VIRTA M., KATAKKA A. The effect of nickel contamination on the growth of litter- decomposing fungi, extracellular enzyme activities and toxicity in soil. Boreal Env. Res. 16, 229, 2011.
  • 29. KUCHARSKI J., WYRWA A., BOROS E., WYSZKOWSKA J. Nitrification process as an indicator of soil contamination with heavy metals. Ecol. Chem. Eng. 16, 953, 2009.
  • 30. MORAWSKA-PŁOSKONKA J., NIKLIŃSKA M. Effects of Soil Moisture and Nickel Contamination on Microbial Respiration Rates in Heavy Metal-Polluted Soils. Pol. J. Environ. Stud. 22 (5), 1411, 2013.
  • 31. PESSOA-FILHO M., BARRETO C.C., DOS REIS JUNIOR F.B., FRAGOSO R.R., COSTA F.S., DE CARVALHO MENDES I., et al. Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. A. Van. Leeuw. 107 (4), 935, 2015.
  • 32. ELLIS R.J., MORGAN P., WEIGHTMAN A.J., FRY J.C. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal contaminated soil. Appl. Environ. Microbiol. 69, 3223, 2003.
  • 33. ANSARI M.I., MALIK A. Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils. Environ. Monit. Assess. 167 (1-4), 151, 2010.
  • 34. WYSZKOWSKA J., WYSZKOWSKI M. Influence of nickel and magnesium on the multiplication of microorganisms in the soil under cultivation of yellow lupine. Rocz. Glebozn. B, 73, 2003 [In Polish].
  • 35. ALVAREZ A., SAEZ J.M., DAVILA COSTA J.S., COLIN V.L., FUENTES M.S., CUOZZO S.A., BENIMELI C.S., POLTI M.A., AMOROSO M.J. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 166, 41, 2017.
  • 36. GROVER M., BODHANKAR S., MAHESWARI M., SRINIVASARAO C.H. Actinomycetes as mitigators of climate change and abiotic stress. In Plant Growth Promoting Actinobacteria, Subramaniam G., Arumugam S., Rajendran V. Eds., Springer Singapore, Singapore, 203, 2016.
  • 37. FLOREA A.M., BUSSELBERG D. Occurrence, use and potential toxic effects of metals and metal compounds. Bio. Metals. 19 (4), 419, 2006.
  • 38. WYSZKOWSKA J., BOROS E., KUCHARSKI J. Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environ. 53 (12), 544, 2007.
  • 39. ZABOROWSKA M., WYSZKOWSKA J., KUCHARSKI J. Microbial activity in zinc contaminated soil of different pH. Pol. J. Environ. Stud. 15 (2a), 569, 2006.
  • 40. LAUBER C.L., HAMADY M., KNIGHT R., FIERER N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75 (15), 5111, 2009.
  • 41. ZHALNINA K., DIAS R., DE QUADROS P.D., DAVIS-RICHARDSON A., CAMARGO F.A., CLARK I.M., MCGRATH S.P., HIRSCH P.R., TRIPLETT E.W. Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol. 69 (2), 395, 2015.
  • 42. KANDZIORA-CIUPA M., CIEPAŁ R., NADGÓRSKA-SOCHA A. Assessment of Heavy Metals Contamination and Enzymatic Activity in Pine Forest Soils under Different Levels of Anthropogenic Stress. Pol. J. Environ. Stud. 25 (3), 1045, 2016.
  • 43. ÜNVER I., MADENOGLU S., DILSIZ A., NAMLI A. Influence of rainfall and temperature on DTPA extractable nickel content of serpentine soils in Turkey. Geoderma. 202-203, 203, 2013.
  • 44. MASSAS I., KALIVAS D., EHALIOTIS C., GASPARATOS D. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environ. Monitor. Asses. 185 (8), 6751, 2013.
  • 45. IYAKA Y.A. Nickel in soils: a review of its distribution and impacts. Sci. Res. Essays. 6 (33), 6774, 2011.
  • 46. ANTIBACHI D., KELEPERTZIS E., KELEPERTSIS A. Heavy Metals in Agricultural Soils of the Mouriki-Thiva Area (Central Greece) and Environmental Impact Implications. Soil Sediment Contam. 21 (4), 434, 2012.
  • 47. BINI C., MALECI L., WAHSHA M. Potentially toxic elements in serpentine soils and plants from Tuscany (Central Italy). A proxy for soil remediation. Catena. 148, 60, 2017.
  • 48. WANG Y.P., SHI J.Y., LIN Q., CHEN X.C., CHEN Y.X. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J Environ Sci (China). 19, 848, 2007.
  • 49. SHI Z., CAO Z., QIN D., ZHU W., WANG Q., ET A.L. Correlation models between environmental factors and bacterial resistance to antimony and copper. PLoS ONE. 8, 10, 2013.
  • 50. ZHAO S., QIU S., CAO C., ZHENG C., ZHOU W., HE P. Responses of soil properties, microbial community and crop yields to various rates of nitrogen fertilization in a wheat-maize cropping system in north-central China. Agric. Ecosyst. Environ. 194, 29, 2014.
  • 51. DEGENS B.P., SCHIPPER L.A., SPARLING G.P., VOJVODIC-VUKOVIC M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 32 (2), 189, 2000.
  • 52. LEJON D.P.H., PASCAULT N., RANJARD L. Differential copper impact on density, diversity and resistance of adapted culturable bacterial populations according to soil organic status. Eur. J. Soil. Biol. 46 (2), 168, 2010.
  • 53. BOTEVA S., RADEVA G., TRAYKOV I., KENAROVA A. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils. Environ. Sci. Pollut. Res. 23 (6), 5644, 2016.
  • 54. AZARBAD H., VAN GESTEL C.A.M., NIKLIŃSKA M., LASKOWSKI R., RÖLING W.F.M., VAN STRAALEN N.M. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses. Int. J. Mol. Sci. 17 (6), 933, 2016.
  • 55. ÁLVAREZ-LÓPEZ V., PRIETO-FERNÁNDEZ Á., BECERRA-CASTRO C., MONTERROSO C., KIDD P.S. Rhizobacterial communities associated with the flora of three serpentine outcrops of the Iberian Peninsula. Plant Soil. 403 (1-2), 233, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ea963485-0c9c-4079-ba45-6f961929c4b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.