PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 6 |

Tytuł artykułu

How reclamation type and age influence the abundance of earthworms in anthropogenic soils

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study we determined the effects of reclamation type and age on earthworm communities. We focused on forestry and agricultural reclaimed territories in northwest Czech Republic that were recently affected by opencast brown coal mining. We were interested in both the numbers and the biomass of obtained earthworms. The results showed that there was a significant difference between numbers of earthworms in the statistical model with spoil bank age and reclamation type interaction and those in non-interaction statistical models. With regards to the rapid development of earthworm communities, forestry reclamation is more suitable for earthworm communities than agricultural reclamation. However, we can assume that differences between methods of reclamation on the oldest spoils are becoming less evident, and the numbers of individuals become comparable.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

6

Opis fizyczny

p.1887-1890,fig.,ref.

Twórcy

autor
  • Department of Zoology and Fisheries, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 165 21 Praha 6-Suchdol, Czech Republic
autor
  • Department of Zoology and Fisheries, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 165 21 Praha 6-Suchdol, Czech Republic

Bibliografia

  • 1. SECRETARIAT OF THE CONVENTION ON BIOLOGICAL DIVERSITY. Biodiversity on earth: state and perspectives. Scientia, Praha. pp. 261, 2005 [In Czech].
  • 2. COLEMAN D., CROSSLEY D., HENDRIX P. Fundamentals of Soil Ecology. Elsevier, New York, pp. 386, 2004.
  • 3. FRANCIS G. S., FRASER P. M. The effects of three earthworm species on soil macroporosity and hydraulic conductivity. Appl. Soil Ecol. 10, (1-2), 11, 1998.
  • 4. STINNER B. R., HOUSE G. J. Arthropods and Other Invertebrates in Conservation-Tillage Agriculture. Annu. Rev. Entomol. 35, 299, 1990.
  • 5. LAVELLE P., BIGNELL D., LEPAGE M., WOLTERS V., ROGER P., INESON P., HEAL O.W., DHILLION S., Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J Soil Biol. 33, (4), 159, 1997.
  • 6. LAVELLE P., SPAIN A. Soil Ecology. Kluwer Scientific Publications. Amsterdam, pp. 684, 2001.
  • 7. GARCIA-RUIZ R., OCHOA V., VINEGLA B., HINOJOSA M. B., PENA-SANTIAGO R., LIEBANAS G., LINARES J. C., CARREIRA J. A. Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive oil farming: Influence of seasonality and site features. Appl. Soil Ecol. 41, (3), 305, 2009.
  • 8. FRAGOSO C., LAVELLE P., BANCHART E., SENAPATI K. B., JIMÉNEZ J. J., MARTINEZ D. L. A. M., DECAËNS T., TONDOH J. Earthworm communities of tropical agroecosystems: origin, structure and influence of management practices (In: Earthworm management in tropical agroecosystems, Eds: P. Lavelle, L. Brussaard, P. Hendrix). CABI, Wallingford, pp. 27-55, 1999.
  • 9. HOLE G. D., PERKINS J. A., WILSON D. J., ALEXANDER H. I., GRICE V. P., EVANS D. A. Does organic farming benefit biodiversity? Biol. Conserv. 122, (1), 113, 2005.
  • 10. PAOLETTI M. G. The role of earthworms for assessment of sustainability and as bioindicators. Agr. Ecosyst. Environ. 74, (1-3), 137, 1999.
  • 11. TISCHER S. Earthworms (Lumbricidae) as bioindicators: the relationship between in-soil and in-tissue heavy metal content. Pol. J. of Ecol. 57, (3), 513, 2009.
  • 12. CIARKOWSKA, K. Effect of fertilization on the structure of upland grassland soil. Pol. J Environ. Stud. 19, (4), 693, 2010.
  • 13. GÓMEZ-BRANDÓN M., LAZCANO C., LORES M., DOMÍNGUEZ J. Detritivorous earthworms modify microbial community structure and accelerate plant residue decomposition. Appl. Soil Ecol. 44, (3), 237, 2010.
  • 14. DUNGER W., VOIGTLÄNDER K. Assessment of biological soil quality in wooded reclaimed mine sites. Geoderma. 129, (1-2), 32, 2005.
  • 15. STRAUBE D., JOHNSON E. A., PARKINSON D., SCHEU S., EISENHAUER N. Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos. 118, (6), 885, 2009.
  • 16. EDWARDS C. A., BOHLEN P. J. Biology and Ecology of Earthworms 3rd ed. Chapman & Hall, London, UK. pp. 426, 1996.
  • 17. TROPEK R., KADLEC T., HEJDA M., KOCAREK P., SKUHROVEC J., MALENOVSKY I., VODKA S., SPITZER L., BANAR P., KONVICKA M. Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol. Eng. 43, 13, 2012.
  • 18. TROPEK R., KADLEC T., KARESOVA P., SPITZER L., KOCAREK P., MALENOVSKY I., BANAR P., TUF I. H., HEJDA M. KONVICKA M. Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl. Ecol. 47, (1), 139, 2010.
  • 19. ŠTÝS S. Recultivation. Mostecká uhelná společnost, a. s., Most. pp. 63, 2006.
  • 20. CAO X. Regulating mine land reclamation in developing countries: The case of China. Land Use Policy 24, (2), 472, 2007.
  • 21. CZECH COAL GROUP. Yearly Report of the Czech Coal Group 2011, 2012.
  • 22. GUNN A. The use of mustard to estimate earthworm populations. Pedobiologia 36, (2), 65, 1992.
  • 23. LAWRENCE A. P., BOWERS M. A. A test of the ‘hot’ mustard extraction method of sampling earthworms. Soil Biol. Biochem. 34, (4), 549, 2002.
  • 24. PEKÁR S., BRABEC M. Modern analysis of biological data, linear models with correlations in the R software environment. MuniPress, Brno, 2012 [In Czech].
  • 25. PEKÁR S., BRABEC M. Modern analysis of biological data, generalized linear models in R software. Scientia, Praha, 2009 [In Czech].
  • 26. R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. pp. 1705, 2009.
  • 27. FROUZ J., PRACH K., PIŽL V., HÁNĚL L., STARÝ J., TAJOVSKÝ K., MATERNA J., BALÍK V., KALČÍK J., ŘEHOUNKOVÁ K. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J Soil Biol. 44, (1), 109, 2008.
  • 28. ANDRÉS P., MATEOS E. Soil mesofaunal responses to post-mining restoration treatments. Appl. Soil Ecol. 33, (1), 67, 2006.
  • 29. FROUZ J., KEPLIN B., PIŽL V., TAJOVSKÝ K., STARÝ J., LUKEŠOVÁ A., NOVÁKOVÁ A., BALÍK V., HÁNĚL L., MATERNA J., DUKER C., CHALUPSKÝ J., RUSEK J., HEINKELE, T. Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol. Eng. 17, (2-3), 275, 2001.
  • 30. PIŽL V. Earthworm succession in abandoned fields – a comparison of deductive and sequential approaches to study. Pedobiologia. 43, (6), 705, 1999.
  • 31. DUNGER W., WANNER M., HAUSER H., HOHBERG K., SCHULZ H. J., SCHWALBE T., SEIFERT B., VOGEL J., VOIGTLANDER K., ZIMDARS B., ZULKA K.P. Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia 45, (3), 243, 2001.
  • 32. VOŽENÍLKOVÁ K. Development of centipede (Chilopoda) communities during primary succession on colliery spoil heaps in Sokolovsko district (Master thesis). The University of South Bohemia, pp. 56, 2003 [In Czech].
  • 33. GRGIĆ T., KOS I. Influence of forest development phase on centipede diversity in managed beech forests in Slovenia. – Biodivers. Conserv. 14, (8), 1841, 2005.
  • 34. PIŽL V. Earthworm succession in afforested colliery spoil heaps in the Sokolov region, Czech Republic. Restor. Ecol. 9, (4), 359, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e9d68ca2-8cd7-4be1-9583-1dab30e16988
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.