PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 5 |

Tytuł artykułu

Iodine and selenium biofortification of lettuce (Lactuca sativa L.) by soil fertilization with various compounds of these elements

Treść / Zawartość

Warianty tytułu

PL
Biofortyfikacja sałaty (Lactuca sativa L.) w jod i selen przy nawożeniu doglebowym różnymi formami chemicznymi tych pierwiastków

Języki publikacji

EN

Abstrakty

EN
Relatively little is known on the interaction between iodine and selenium in plants. It may become a drawback in developing agrotechnical rules of plant biofortification with these elements. The aim of the study was to determine the influence of soil fertilization with various forms of iodine (I- and IO₃ - ) and selenium (SeO₃ ²- and SeO₄ ²-) on yield, biofortification efficiency and selected chemical properties of lettuce plants. The study (conducted in 2012–2014) included soil fertilization of lettuce cv. ‘Valeska’ in the following combinations: control (without iodine and selenium fertilization), KI, KIO₃, Na₂SeO₄, Na₂SeO₃, KI + Na₂SeO₄, KIO₃ + Na₂SeO₄, KI + Na₂SeO₃, KIO₃ + Na₂SeO₃. Iodine and selenium were applied twice: before sowing and as a top-dressing in a total dose of 5 kg I·ha- ¹ and 1 kg Se·ha-¹. Only the application of Na₂SeO4 (individually or together with iodine) exhibited strong toxic effect on plants which was accompanied by the highest accumulation of Se, selenomethionine (SeMet) and selenocysteine (SeCys) in lettuce. The accumulation of I and Se in lettuce was respectively higher after fertilization KI than KIO3 and Na₂SeO₄ than Na₂SeO₃. Simultaneous application of iodine and selenium decreased the level of Se, SeMet and SeCys in lettuce − particularly in the combination with KIO₃ + Na₂SeO₃. Simultaneous application of KI with both forms of seleniumdecreased iodine content in lettuce as related to the treatment with KI alone. In the case of lettuce from the combinations with KIO₃, KIO₃ + Na₂SeO₄ i KIO₃ + Na₂SeO₃, comparable results of iodine concentration were obtained.
PL
Stosunkowo niewiele wiadomo na temat interakcji pomiędzy jodem i selenem w roślinach. Stanowi to problem w opracowaniu racjonalnych agrotechnicznych zasad biofortyfikacji roślin w te składniki. Celem badań było określenie wpływu nawożenia doglebowego różnymi formami jodu (I- i IO₃ - ) i selenu (SeO₃ ²- i SeO₄ ²-) na plon, wydajność biofortyfikacji oraz wybrane chemiczne właściwości roślin sałaty. Badania (przeprowadzone w latach 2012–2014), obejmowały następujące kombinacje nawożenia doglebowego sałaty ‘Valeska’: kontrola (bez nawożenia jodem i selenem), KI, KIO₃, Na₂SeO₄, Na₂SeO₃, KI + Na₂SeO₄, KIO₃ + Na₂SeO₄, KI + Na₂SeO₃, KIO₃ + Na₂SeO₃. Związki jodu i selenu były aplikowane dwukrotnie: przedsiewnie oraz pogłównie (każda aplikacja po 2,5 kg I·ha- ¹ + 0,5 kg Se·ha-¹) – całkowita zastosowana dawka wynosiła 5 kg I·ha- ¹ oraz 1 kg Se·ha-¹. Jedynie nawożenie Na₂SeO4 (osobno i łącznie z KI i KIO₃ ) wywierało silnie toksyczny wpływ na rośliny. Towarzyszyło temu największe nagromadzenie selenu oraz selenometioniny (SeMet) i selenocysteiny (SeCys) w sałacie. Akumulacja I i Se w sałacie była odpowiednio wyższa po nawożeniu KI niż KIO3 oraz Na₂SeO₄ niż Na₂SeO₃. Równoczesne nawożenie jodem i selenem powodowało zmniejszenie zawartości selenu, SeMet i SeCys w sałacie − zwłaszcza po nawożeniu KIO₃ + Na₂SeO₃. Równoczesne nawożenie KI z obiema formami selenu, w porównaniu z aplikowaniem samego KI, obniżało zawartość jodu w sałacie. W przypadku obiektów KIO₃, KIO₃ + Na₂SeO₄ i KIO₃+ Na₂SeO₃ stwierdzono porównywalny między nimi stopień akumulacji jodu w sałacie.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

5

Opis fizyczny

p.69-91,fig.,ref.

Twórcy

autor
  • University of Agriculture in Krakow, Krakow, Poland
autor
  • Unit of Plant Nutrition, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland,
  • University of Agriculture in Krakow, Krakow, Poland
autor
  • University of Agriculture in Krakow, Krakow, Poland
autor
  • University of Agriculture in Krakow, Krakow, Poland
  • University of Agriculture in Krakow, Krakow, Poland
  • University of Agriculture in Krakow, Krakow, Poland
autor
  • University of Agriculture in Krakow, Krakow, Poland
  • University of Agriculture in Krakow, Krakow, Poland
  • University of Agriculture in Krakow, Krakow, Poland
autor
  • University of Agriculture in Krakow, Krakow, Poland

Bibliografia

  • Andersson, M., de Benoist, B., Darnton-Hill, I., Delange, F. (2007). Iodine deficiency in Europe: A continuing public health problem. Geneva: World Health Organization.
  • Bañuelosa, G.S., Akohouea, S. (1994). Comparison of microwave digestion with block digestion for selenium and boron analysis in plant tissues. Comm. Soil Sci. Plant Anal., 25(9–10), 1655–1670. doi: 10.1080/00103629409369142
  • Blasco, B., Rios, J.J., Leyva, R., Cervilla, L.M., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Rosales, M.A., Ruiz, J.M., Romero, L. (2010). Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace Elem. Res., 142(3), 831–842. doi: 10.1007/s12011 -010-8816-9.
  • Borowski, E., Hawrylak-Nowak, B., Michałek, S. (2014). The response of lettuce to fluorescent light and led light relative to different nitrogen nutrition of plants. Acta Sci. Pol. Hortorum Cultus, 13(5), 211–224.
  • Chilimba, A.D.C., Young, S.D., Black, C.R., Meacham, M.C., Lammel, J., Broadley, M.R. (2012). Assessing residual availability of selenium applied to maize crops in Malawi. Field Crop Res., 134, 11–18. doi: 10.1016/j.fcr.2012.04.010.
  • Cseh, E., Böszörményi, Z. (1964). The absorption and metabolism of halides and halogenates by excised wheat roots. Plant Soil, 20(3), 371–382.
  • Dzida, K., Jarosz, Z., Michałojć, Z., Nurzyńska-Wierdak, R. (2012a). The influence of diversified nitrogen and liming fertilization on the chemical composition of lettuce. Acta Sci. Pol. Hortorum Cultus, 11(3), 247–254.
  • Dzida, K., Jarosz, Z., Michalojć, Z., Nurzyńska-Wierdak, R. (2012b). The influence of diversified nitrogen and liming fertilization on the yield and biological value of lettuce. Acta Sci. Pol., Hortorum Cultus, 11(3), 239–246
  • Elrashidi, M.A., Adriano, D.C., Lindsay, W.L. (1989). Solubility, speciation, and transformation of selenium in soils. Am. Soc. Agron. Crop Sci. Soc. Am. Soil, 23, 51–64. doi:10.2136/sssaspecpub23.c3
  • Eurola, M., Alfthan, G., Aro, A., Ekholm, P., Hietaniemi, V., Rainio, H., Rankanen, R., Venäläinen, E.R. (2003). Results of the Finnish selenium monitoring program 2000–2001. Agrifood Res. Rep., 36, 42 p.
  • Food and Nutrition Board – Institute of Medicine (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, carotenoids. National Academy Press, Washington.
  • GUS (2005). Environment Protection 2005. Information and statistical analysis Central Statistical Office of Poland. Warsaw (in Polish).
  • Hawrylak, B., Szymańska, M., (2004). Selenium as a sulphydrylic group inductor in plants. Cell. Mol. Biol. Lett., 9, 329–336.
  • Kabata-Pendias, A. (2011). Trace elements in soil and plants. Fourth Edition CRC Press, Taylor and Francis Group.
  • Kato, S., Wachi, T., Yoshihira, K., Nakagawa, T., Ishikawa, A., Takagi, D., Tezuka, A., Yoshida, H., Yoshida, S., Sekimoto, H., Takahashi, M. (2013). Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci. doi: 10.3389/fpls.2013.00227
  • Kopeć, A., Piątkowska, E., Bieżanowska-Kopeć, R., Pysz, M., Koronowicz, A., Kapusta-Duch, J., Smoleń, S., et al. (2015). Effect of lettuce biofortified with iodine by soil fertilization on iodine concentration in various tissues and selected biochemical parameters in serum of Wistar rats. J. Funct. Foods, 14, 479–486. doi:10.1016/j.jff.2015.02.027
  • Kopsell, D.A., Kopsell, D.E. (2007). Selenium, in: Handbook of plant nutrition, Barker, A.V., Pilbeam, D.J. (eds). CRC Press Taylor & Francis Group, pp 515–549.
  • Koronowicz, A., Kopeć, A., Master, A., Smoleń, S., Piątkowska, E., Bieżanowska-Kopeć, R., Kapusta-Duch, J., Skoczylas, Ł., Ledwożyw-Smoleń, I., Rakoczy, R., Pysz, M., Leszczyńska, T. (2016). Transcriptome profiling of Caco-2 cancer cell line following treatment with extracts from iodine-biofortified lettuce (Lactuca sativa L.). PLoS ONE 11(1), e0147336. doi:10.1371/journal.pone.0147336
  • Koyama, H., Takita, E., Kawamura, A., Hara, T., Shibata, D. (1999). Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Phys., 40(5), 482–488.
  • Lavu, R.V.S., De Schepper, V., Steppe, K., Majeti, P.N., Tack, F., Du Laing, G. (2013). Use of selenium fertilizers for production of Se-enriched Kenaf (Hibiscus cannabinus): Effect on Se concentration and plant productivity. J. Plant Nut. Soil Sci., 176, 634–639. doi: 10.1002/jpln.201200339
  • Li, J., Liang, D., Qin, S., Feng, P., Wu, X. (2015). Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Envir. Sci. Poll. Res., 22(14), 11076–11086. doi: 10.1007/s11356-015-4344-7
  • Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G., Zou, C. (2014). Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nutr., 14(2), 459–470.
  • McNally, S.R., 2011. “The Status of Iodine and Selenium in Waikato Soils.” Master’s thesis, The University of Waikato. Retrieved from http://researchcommons.waikato.ac.nz/handle/10289/5375 on 11 May 2016.
  • Ohno, T., Koyama, H., Hara, T. (2003). Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion. Plant Cell Physiol., 44(2), 156–162. doi: 10.1093/pcp/pcg025
  • Pasławski, P., Migaszewski, Z.M. (2006). The quality of element determinations in plant materials by instrumental methods. Pol. J. Environ. Stud., 15(2a), 154–164.
  • Pitura, K., Michałojć, Z. (2012). Influence of nitrogen doses on salt concentration, yield, biological value, and chemical composition of some vegetable plant species. Part I. Yield and biological value. Acta Sci. Pol. Hortorum Cultus, 11(6), 145–153.
  • PN-EN 15111 (2008). Foodstuffs – Determination of trace elements – Determination of iodine by ICP-MS (inductively coupled plasma mass spectrometry). Polish Committee of Standardization, Warsaw.
  • Poblaciones, M.J., Rodrigo, S., Santamaría, O., Chen, Y., McGrath, S.P. (2014). Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chem., 146, 378–384. doi:10.1016/j.foodchem.2013.09.070
  • Przybysz, A., Wrochna, M., Małecka-Przybysz, M., Gawrońska, H., Gawroński, S.W. (2015). The effects of Mg enrichment of vegetable sprouts on Mg concentration, yield and ROS generation. J. Sci. Food Agric., epub. 2015 Nov 13. doi: 10.1002/jsfa.7530
  • Pyrzynska, K. (2009). Selenium speciation in enriched vegetables. Food Chem., 114(4), 1183– 1191. doi:10.1016/j.foodchem.2008.11.026
  • Ramos, S.J., Faquin, V., Guilherme, L.R.G., Castro, E.M., Ávila, F.W., Carvalho, G.S., Bartos, C.E.A., Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ., 56(12), 584–588.
  • Ren, Q., Fan, F., Zhang, Z., Zheng, X., DeLong, G.R. (2008). An environmental approach to correcting iodine deficiency: Supplementing iodine in soil by iodination of irrigation water in remote areas. J. Trace Elem. Med. Biol., 22, 1–8. doi: 10.1016/j.jtemb.2007.09.003.
  • Ríos, J.J., Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L., Ruiz, J.M. (2008). Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hort., 116, 248–255. doi: 10.1016/j.scienta.2008.01.008
  • Ríos, J.J., Blasco, B., Cervilla, L.M., Rubio-Wilhelmi, M.M., Rosales, M.A., Sánchez-Rodríguez, E., Romero, L., Ruiz, J.M. (2010). Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Regul., 29, 164–170. doi: 10.1007/s00344-009-9130-7
  • Rodrigo, S., Santamaria, O., Poblaciones, M.J. (2014). Selenium application timing: Influence in wheat grain and flour selenium accumulation under mediterranean conditions. J. Agric. Sci., 6(3), 23–30. doi:http://dx.doi.org/10.5539/jas.v6n3p23
  • Smoleń, S., Kowalska, I., Sady, W. (2014). Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hort., 166, 9–16. doi: 10.1016/j.scienta.2013.11.011
  • Smoleń, S., Ledwożyw-Smoleń, I., Sady, W. (2016). The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil., 402, 129–143. doi: 10.1007/s11104-015-2785-x
  • Smoleń, S., Strzetelski, P., Rożek, S., Ledwożyw-Smoleń, I. (2011). Comparison of iodine determination in spinach using 2% CH3COOH and TMAH. Acta Sci. Pol. Hortorum Cultus, 10 (3), 29–38.
  • Swain, T., Hillis, W.E. (1959). Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agr., 10, 63–71.
  • Tonacchera, M., Dimida, A., De Servi, M., Frigeri, M., Ferrarini, E., De Marco, G., Grasso, L., Agretti, P., Piaggi, P., Aghini-Lombardi, F., Perata, P., Pinchera, A., Vitti, P. (2013). Iodine fortification of vegetables improves human iodine nutrition: in vivo evidence for a new model of iodine prophylaxis. J. Clinic. Endoc. Met., 98(4), E694–E697. doi: 10.1210/jc.2012-3509.
  • Varga, I. (2007). Iodine determination in dietary supplement products by TXRF and ICP-AES spectrometry. Microchem. J., 85, 127–131. doi:10.1016/j.microc.2006.06.014
  • Voogt, W., Holwerda, H.T., Khodabaks, R. (2010). Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Scien. Food Agricul., 90, 906–913. doi: 10.1002/jsfa.3902.
  • Voogt, W., Jackson, W.A. (2010). Perchlorate, nitrate, and iodine uptake and distribution in lettuce (Lactuca sativa L.) and potential impact on background levels in humans. J. Agric. Food Chem. 58, 12192–12198. doi: 10.1021/jf101227d
  • Vtorushina, E.A., Saprykin, A.I., Knapp, G. (2008). Optimization of the conditions of oxidation vapor generation for determining chlorine, bromine, and iodine in aqueous solutions by inductively coupled plasma atomic-emission spectrometry. J. Anal. Chem., 63(7), 643–648. doi: 10.1134/S1061934808070071
  • Vtorushina, E.A., Saprykin, A.I., Knapp, G. (2009). Use of oxidation and reduction vapor generation for lowering the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry. J. Anal. Chem., 64(2), 129–135. doi: 10.1134/S1061934809020063
  • Wińska-Krysiak, M. (2006). Calcium transporters in plants. Acta Agrophys., 7(3), 751–762 (in Polish with English abstract). White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 182(1), 49–84. doi: 10.1111/j.1469-8137.2008.02738.x
  • WHO (2004). Global Strategy on Diet, Physical Activity and Heath. World Health Organization. Geneva, Switzerland. WHO (2014). Salt reduction and iodine fortification strategies in public health. Raport of a joint technical meeting convened by World Health Organization and The Global Health in collaboration with the International Council for the Control of Iodine Deficiency Disorders Global Network. Australia, March 2013.
  • Geneva. Yamada, H., Kiriyama, T., Yonebayashi, K. (1996). Determination of total iodine in soils by inductively coupled plasma mass spectrometry. Soil Sci. Plant Nut., 42, 859–866. doi: 10.1080/00380768.1996.10416633
  • Zhao, Y.Q., Zheng, J.P., Yang, M.W, Yang, G.D, Wu, Y.N., Fu, F.F. (2011). Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta, 84, 983–988. doi:10.1016/j.talanta.2011.03.004
  • Zhou, C.Y., Wong, M.K., Koh, L.L., Wee, Y.C. (1997). Evaluation of high-pressure microwave digestion methods for hydride generation atomic absorption spectrometric determination of total selenium and arsenic in sediment. Microchim. Acta, 127, 77–83. doi: 10.1007/BF01243168
  • Zhu, Y.G., Huang, Y., Hu, Y., Liu, Y., Christie, P. (2004). Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil, 261, 99–105. doi: 10.1023/B:PLSO.0000035539.58054.e1
  • Zhu, Y.G., Pilon-Smits, E.A.H., Fang-Jie, Z., Williams, P.N., Meharg, A.A. (2009). Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci., 14(8), 436–442. doi: 10.1016/j.tplants.2009.06.006

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e9cf4cf8-2ad5-4923-80dc-c2a77ea3772a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.