PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 60 | 3 |

Tytuł artykułu

Influence of cadmium on protein profile of flax varieties (Linum usitatissimum L.)

Treść / Zawartość

Warianty tytułu

PL
Wpływ kadmu na zmianę profili białkowych odmian lnu (Linum usitatissimum L.)

Języki publikacji

EN

Abstrakty

EN
The aim of the study was the evaluation of the influence of cadmium on protein profile of flax varieties (Linum usitatissimum L.). Linola and Norlin explants were cultured on control medium Dorothy and with addition of 25 and 75 mg/l Cd(NO3)2. Extracts were separated on DEAE-Cellulose (20 mM Tris-HCl buffer, 0.2-1 M NaCl). Protein content was evaluated by measuring the absorbance at wavelengths 280 and 254 nm. Linola was characterized by proteins occurrence in fractions eluted by 0.4 and 0.6 M NaCl at 25 mg/l of Cd(NO3)2, at 75 mg/l and additionally by 0.3 M NaCl. Norlin showed response in the form of proteins appeared at 0.2, 0.4, 0.5 and 0.6 M NaCl gradient at 25 mg/l of cadmium, at higher concentration in fractions eluted by 0.2, 0.5 and 0.6 M NaCl. Electrophoretic analysis showed an increase in the protein bands intensity above 60 kDa and under 52 kDa in extracts from flax cultivated with Cd(NO3)2. Studies showed appearance of new proteins during stress condition.
PL
Celem badań była ocena wpływu kadmu na zmianę profili białkowych odmian lnu (Linum usitatissimum L.). Eksplantaty Linola i Norlin hodowano na podłożu kontrolnym Dorota oraz z dodatkiem 25 i 75 mg/l Cd(NO3)2. Ekstrakty rozdzielano na kolumnie DEAE-Celuloza (20 mM Tris-HCl bufor, gradient 0,2-1 M NaCl). Zawartość białek oceniano przez pomiar absorbancji przy długości fali 280 i 254 nm. Linola charakteryzowała się pojawieniem białek we frakcji wymywanej 0,4 i 0,6 M NaCl przy niższym stężeniu kadmu, natomiast przy 75 mg/l azotanu kadmu dodatkowo we frakcjach wymywanych 0,3 M NaCl. Norlin wykazała obecność białek we frakcjach wymywanych 0,2, 0,4, 0,5 i 0,6 M NaCl w obecności 25 mg/l Cd(NO3)2 w podłożu, przy większym stężenie kadmu pojawiły się białka we frakcjach wymywanych 0,2, 0,5 oraz 0,6 M NaCl. Analiza elektroforetyczna wykazała wzrost intensywności pasm białek w zakresie powyżej 60 kDa i poniżej 52 kDa pod wpływem kadmu w obu odmianach lnu. Przedstawione badania potwierdziły pojawienie się nowych białek w warunkach stresu kadmowego.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

60

Numer

3

Opis fizyczny

p.66-76,fig.,ref.

Twórcy

autor
  • Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
autor
  • Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
autor
  • Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
autor
  • Department of Biochemistry and Biotechnology, Poznan University of Life Science, Dojazd 11, 60-632 Poznan, Poland
autor
  • Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland

Bibliografia

  • 1. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 2011; 122(7):1385-97. doi: 10.1007/s00122-011-1539-2. Epub 2011 Feb 4.
  • 2. Karg S. New research on the cultural history of the useful plant Linum usitatissimum L. (flax), a resource for food and textiles for 8,000 years. Veg Hist Archaeobot 2011; 20(6):507-8.
  • 3. Zając T, Oleksy A, Klimek-Kopyra A, Kulig B. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.). Acta Agrobotan 2012; 65(4):3-14.
  • 4. El-Nagdy GA, Nassar DMA, El-Kady EA, El-Yamanee GSA. Response of Flax Plant (Linum usitatissimum L.) To treatments with mineral and bio-fertilizers from nitrogen and phosphorus. J Am Sci 2010; 6(10):207-17.
  • 5. Bjelková M, Genčurová V, Griga M. Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: A potential for phytoremediation of Cd-contaminated soils. Ind Crops Prod 2011; 33:761-74.
  • 6. Singh KK, Mridula D, Rehal J, Barnwal P. Flaxseed: A Potential Source of Food, Feed and Fiber. Crit Rev Food Sci Nutr 2011; 51:210-22.
  • 7. Najmanova J, Neumannova E, Leonhardt T, Zitka O, Kizek R, Macek T et al. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Ind Crops Prod 2012; 36:536-42.
  • 8. Babu PR, Rao KV, Reddy VD Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene 2013; 513:156-62.
  • 9. Jadhav PD, Okinyo-Owiti DP, Ahiahonu PWK, Reaney MJT. Detection, isolation and characterisation of cyclolinopeptides J and K in ageing flax. Food Chem 2013; 138:1757-63.
  • 10. Lowcock EC, Cotterchio M, Boucher BA. Consumption of flaxseed, a rich source of lignans, is associated with reduced breast cancer risk. Cancer Causes Control 2013; 24:813–6.
  • 11. Cameron SJ, Hosseinian F. Potential of flaxseed in the development of omega-3 rice paper with antioxidant activity. LWT. Food Sci Technol 2013; 53:170-5.
  • 12. Klubicova K, Berčák M, Danchenko M, Skultety L, Rashydov NM, Berezhna VV et al. Agricultural recovery of a formerly radioactive area: I. Establishment of high-resolution quantitative protein map of mature flax seeds harvested from the remediated Chernobyl area. Phytochemistry 2011; 72:1308-15.
  • 13. Kaewmanee T, Bagnasco L, Benjakul S, Lanteri S, Morelli CF, Speranza G et al. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chem 2014; 148:60-9.
  • 14. Yan L, Chouw N, Jayaraman K. Flax fibre and its composites – A review. Compos Part B 2014; 56:296–317.
  • 15. Dymińska L, Szatkowski M, Wróbel-Kwiatkowska M, Żuk M, Kurzawa A, Syska W et al. Improved properties of micronized genetically modified flax fibers. J Biotech 2012; 164:292-9.
  • 16. Jasiewicz C, Antonkiewicz J. Assessment of common flax (Linum usitatissimum L.) usability for phytoremediation of soil contaminated with heavy metals. Ecol Chem Engineer 2003; 10:901-7.
  • 17. Angelova V, Ivanova R, Delibaltova V, Ivanov K. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod 2004; 19:197-205.
  • 18. Rezić I. Cellulosic fibers - Biosorptive materials and indicators of heavy metals pollution. Microchem J 2013; 107:63-9.
  • 19. Douchiche O, Chaibi W, Morvan C. Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: Contribution of the basal stem compared to the root. J Hazard Mater 2012; 235-236:101–7.
  • 20. Panitlertumpai N, Nakbanpote W, Sangdee A, Thumanu K, Nakai I, Hokura A. Zinc and/or cadmium accumulation in Gynura pseudochina (L.) DC. Studied in vitro and the effect on crude protein. J Mol Struct 2013; 1036:279–91.
  • 21. Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 2002; 53:159-82.
  • 22. Baranowska-Morek A. Roślinne mechanizmy tolerancji na toksyczne działanie metali ciężkich. Kosmos Probl Nauk Biol 2003; 52:283-98.
  • 23. Cai Y, Cao F, Cheng W, Hang G, Wu F. Modulation of Exogenous Glutathione in Phytochelatins and Photosynthetic Performance Against Cd Stress in the Two Rice Genotypes Differing in Cd Tolerance. Biol Trace Elem Res 2011; 143:1159-73.
  • 24. Cavanillas S, Gusmão R, Ariño C, Díaz-Cruz JM, Esteban M. Voltammetric Analysis of Phytochelatin Complexation in Ternary Metal Mixtures Supported by Multivariate Analysis and ESI-MS. Electroanalysis 2012; 24:309-15.
  • 25. Mendoza-Cózatl DG, Rodríguez-Zavala JS, Rodríguez-Enríquez S, Mendoza-Hernandez G, Briones- Gallardo R, Moreno-Sánchez R. Phytochelatin-cadmium-sulfide high-molecular-mass complexes of Euglena gracilis. FEBS J 2006; 273:5703-13.
  • 26. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680-5.
  • 27. Szalata M, Szalata M, Wielgus K. The changes in the proteins profile induced by cadmium stress in flax (Linum usitatissimum L.). Herba Polonica 2009; 55:298-303.
  • 28. Li-Chan ECY, Sultanbawa F, Losso JN, Oomah BD, Mazza G. Characterization of phytochelatin-like complexes from flax (Linum usitatissimum) seed. J Food Biochem 2002; 26:271-93.
  • 29. Oomah BD, Berekoff B, Li-Chan ECY, Mazza G, Kenaschuk EO, Duguid SD. Cadmium-binding protein components of flaxseed: Influence of cultivar and location. Food Chem 2007; 100:318-25.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e9b191f5-c3c1-4033-b3c7-dcee977ed6f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.