PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 4 |

Tytuł artykułu

Production of bacteriocin E50-52 by small ubiquitin-related modifier fusion in Escherichia coli

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacteriocin E50-52, a class IIa bacteriocin with a wide antibacterial spectrum, and has a huge potential to be a substitute for conventional antibiotics. In this research, the bacteriocin E50-52 gene was cloned into the expression vector pET SUMO (small ubiquitin-related modifier) and introduced into Escherichia coli BL21 (DE3). The recombinant fusion protein SUMO-bacteriocin E50-52 expressed in a soluble form was purified to a purity of more than 90% by Ni-NTA sepharose column and 117 mg fusion protein was obtained per liter of fermentation culture. The fusion protein was cleaved with SUMO protease and re-applied to a Ni-NTA Sepharose column. Finally, about 16 mg recombinant bacteriocin E50-52 (rbE50-52) was obtained from a 1-liter fermentation culture with no less than 95% purity. The rbE50-52 had similar antimicrobial properties and molecular weight as the native bacteriocin E50-52 and showed very low hemolytic activity.

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.345-350,fig.,ref.

Twórcy

autor
  • Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
autor
  • Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
autor
  • Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
autor
  • Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
autor
  • Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China

Bibliografia

  • Butt T.R., S.C. Edavettal, J.R Hall and M.R. Mattern. 2005. SUMO fusion technology for difficult-to-express proteins. Protein Expr. Purif. 43: 1-9.
  • Cleveland J., T.J. Montville, I.E. Nes and M.L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20.
  • Esposito D. and D.K. Chatterjee. 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotech. 17: 353-358.
  • Jasniewski J., C. Cailliez-Grimal, E. Gelhaye and A. Revol-Junelles. 2008. Optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 by heterologous expression in Escherichia coli. J. Microbiol. Meth. 73: 41-48.
  • Jenssen H., P. Hamill and R.E.W. Hancock. 2006. Peptide Antimicrobial Agents. Clin. Microbiol. Rev. 19: 491-511.
  • Joerger R.D. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci. 82: 640-647.
  • Johnson, E.S. 2004. Protein modification by SUMO. Annu. Rev. Biochem. 73: 355-382.
  • Karthikeyan M.S., D J. Prasad, B. Poojary, K. Subrahmanya Bhat, B.S. Holla and N.S. Kumari. 2006. Synthesis and biological activity of Schiff and Mannich bases bearing 2, 4-dichloro-5-fluorophenyl moiety. Bioorgan. Med. Chem. 14: 7482-7489.
  • Klaenhammer T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85.
  • Li B.C., S.Q. Zhang, W.B. Dan, Y.Q. Chen and P. Cao. 2007. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABP-CM4 from the Chinese silk worm, Bombyx mori. Biotechnol. Lett. 29: 1031-1036.
  • Li J.F., J. Zhang, R. Song, J.X. Zhang, Y. Shen and S.Q. Zhang. Production of a cytotoxic cationic antibacterial peptide in Escherichia coli using SUMO fusion partner. Appl. Microbiol. Biotechnol. 84: 383-388.
  • Li J.R, J. Zhang, Z. Zhang, H.W. Ma, J.X. Zhang and S.Q. Zhang. 2010. Production of Bioactive Human Beta-Defen-sin-4 in Escherichia coli Using SUMO Fusion Partner. Protein J. 29: 314-319.
  • Li Y.F. 2009. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol. Appl Biochem. 54: 1-9.
  • Ma Q.S., Z.Q. Yu, B. Han, Q. Wang and R.J. Zhang. 2012. Expression and purification of lacticin Q by small ubiquitin-related modifier fusion in Escherichia coli. J. Mirobiol 50: 326-331.
  • Marblestone J.G., S.C. Edavettal, Y. Lim, P. Lim, X. Zuo and T.R. Butt. 2006. Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Sci. 15: 182-189.
  • Morin K.M., S. Arcidiacono, R. Beckwitt and CM. Mello. 2006. Recombinant expression of indolicidin concatamers in Escherichia coli. Appl Microbiol. Biotechnol 70: 698-704.
  • Muller S., C. Hoege, G. Pyrowolakis and S. Jentsch. 2001. SUMO, ubiquitin's mysterious cousin. Nat. Rev. Mol Cell Bio. 2: 202-213.
  • Rao X.C., S. Li, J.C. Hu, X.L. Jin, X.M. Hu, J.J. Huang, Z.J. Chen, J.M. Zhu and F.Q. Hu. 2004. A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expres. Purif.36: 11-18.
  • Sang Y. and F. Blecha. 2008. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim. Health. Res. Rev. 9: 227-235.
  • Shen Y., H.X. Ai, R. Song, Z.N. Liang, J.F. Li and S.Q. Zhang. Expression and purification of moricin CM4 and human β-defensins 4 in Escherichia coli using a new technology. Microbiol Res. 165:713-718.
  • Sun Z., Z. Xia, F. Bi and J.N. Liu. 2008. Expression and purification of human urodilatin by small ubiquitin-related modifier fusion in Escherichia coli. Appl. Microbiol. Biotechnol. 78: 495-502.
  • Svetoch E.A., B.V. Eruslanov, V.V. Perelygin, E.V. Mitsevich, I.P. Mitsevich, V.N. Borzenkov, V.P. Levchuk, O.E. Svetoch, Y.N. Kovalev, Y.G. Stepanshin, G.R. and others. 2008. Diverse antimicrobial killing by Enterococcus faecium E50-52 bacteriocin. J. Agric. Food Chem. 56: 1942-1948.
  • Svetoch E.A., B.V. Eruslanov, Y.N. Kovalev, E.V. Mitsevich, LP. Mitsevich, VP. Levchuk, N.K. Fursova, V.V. Perelygin, Y.G. Stepanshin, M.G. Teymurasov and others. 2009. Antimicrobial Activities of Bacteriocins E50-52 and B602 Against Antibiotic-Resistant Strains Involved in Nosocomial Infections. Probiotics & Antimicro. Prot. 1: 136-142.
  • Svetoch E.A. and N.J. Stern. 2010. Bacteriocins to control Campylobacter spp. in poultry-A review. Poultry Sci. 89: 1763-1768.
  • Swartz J.R. 2001. Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol 12: 195-201.
  • Tian Z.G., T.T. Dong, D. Teng, Y.L. Yang and J.H. Wang. 2009. Design and characterization of novel hybrid peptides from LFB15 (W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method. Appl. Microbiol Biot. 82: 1097-1103.
  • Wei Q., Y.S. Kim, J.H. Seo, W.S. Jang, I.H. Lee and H.J. Cha. 2005. Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microbiol. 71: 5038-5043.
  • Wu M. and R.E. W. Hancock. 1999. Interaction of the Cyclic Antimicrobial Cationic Peptide Bactenecin with the Outer and Cytoplasmic Membrane. J. Biol. Chem. 274: 29-35.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e9a11989-e625-46ab-ab8b-d07a0cca2dbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.