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Piotr Rapp, Sławomir FiszeR

APPROXIMATE NUMERICAL MODEL FOR ADHESIVE 
SCARF JOINTS IN WOODEN BEAMS 

The purpose of this paper is to formulate an approximate numerical model for 
adhesive scarf joints in wooden beams under the assumption that the joint is de-
formable. This approximate model is founded on observations resulting from the 
general solution of the plane linear theory of elasticity. It is assumed that wood is 
orthotropic. The joint can be subjected to a complex load combination including an 
axial force, a shear force and a bending moment. Within this framework, analytical 
relations for stresses in the adhesive, as well as stresses and displacements of the 
adherends, were derived in a form useful for engineering practice. A numerical 
example proves the high accuracy of the approximate model when compared to the 
general model based on the plane linear theory of elasticity. 
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Introduction

The model of a scarf joint presented in the paper by Rapp [2014] was expressed 
by a set of four partial differential equations of the second order. The boundary 
conditions included the presence of the sharp edges of the adherends. Examples 
of complete solutions within the framework of the theory of elasticity were given 
and analysed, with a focus on how the adhesive joint transfers axial forces, ben-
ding moments and shear forces. It was shown that the adhesive scarf joint does not 
feature stress concentrations in the adhesive and that there exists an approximate 
equivalence of displacement and stress states between the element made of two 
adherends connected by a deformable scarf joint and the continuous element con-
sidered as one with a non-deformable scarf joint.
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The continuous element represents an approximation of the deformable scarf 
joint only when adhesive deformability is small. However, this is not always the 
case. For instance, in repair works carried out on-site, wooden beam elements are 
usually reconstructed by cutting off a damaged fragment and replacing it with a 
new element matching the old one (the exchange of the damaged end of a floor 
beam, a purlin or a rafter). In construction site conditions, cutting is done using a 
chain saw. This yields surfaces which are unsmooth and are not flat. Gaps between 
the old and new elements have a varying thickness of 2–3 mm and are filled with 
adhesive, e.g. a resin composite of small viscosity. Thus, a thick adhesive joint is 
formed with a relatively high deformability.

These types of joints are rarely used in wooden beam structures and as tech-
nological solutions, they do not yet possess either a complete theoretical or expe-
rimental documentation. In other cases, differing from the ones described in this 
paper, scarf joints are frequently used under axial tension [Erdogan, Ratawani 
1971; Reddy, Sinha 1975] or in beams under bending, as joints in the form of mi-
cro-dovetails (finger joints), where the joint is perpendicular to the bending plane 
[Tomasiuk 1988; Smardzewski 1996].

The purpose of this paper is to formulate and use an approximate numerical 
model for an adhesive scarf joint with a deformable adhesive. Thus, the problem 
of solving the set of four partial differential equations given by Rapp [2014] is 
avoided, and analytical formulae to find stresses in the adhesive, as well as stres-
ses and displacements in the adherends, are obtained in a form useful in engine-
ering practice.

Scarf joint model

A wooden beam of a rectangular cross-section is considered consisting of two 
adherends of thickness g made of the same material and connected by an adhesive 
scarf joint. The scarf joint features the adhesive of a plane rectangular shape form-
ing an angle φx with the plane of beam bending 0XY (fig. 1). 

Fig. 1. Adhesive scarf joint in a wooden beam



7Approximate numerical model for adhesive scarf joints in wooden beams 

The set of co-ordinates 0XYZ is attached to the beam and 0XY is the plane 
of beam bending. The adhesive plane is parallel to the Y axis. The projection of 
the adhesive plane on the plane 0XY is the rectangle ABCD with the dimensions 
2lx × 2ly (fig. 2).

Fig. 2. The adhesive scarf joint model

It is assumed that stresses are constant across the adherend thickness and form 
a plane stress state parallel to the plane 0XY. The adherends are considered as 
plane stress elements parallel to the plane 0XY. The adherend thickness is measu-
red perpendicularly to the plane 0XY, and the adhesive thickness t is measured 
perpendicularly to its plane.

In the joint zone, the thickness values g1(x), g2(x) of adherends 1 and 2 vary 
linearly from 0 to g along the X axis and are constant along the Y axis:
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The adhesive is modelled as a linearly elastic isotropic medium described 
with Young’s modulus Es, the shear modulus Gs and Poisson’s ratio νs, where 
Es = 2(1 + νs)Gs. The stress in the adhesive is defined as the action of adherend 1 
on the adhesive. The adhesive is subjected to shear stress tx = tx(x, y), ty = ty(x, y) 
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in its plane and normal stress sN = sN(x, y) perpendicular to its plane. Stress tx is 
parallel to the plane 0XZ, and stress ty is parallel to the Y axis (fig. 3).

Fig. 3. Stresses in the adhesive

It is assumed that the stress in the adhesive is constant across its thickness. The 
sign convention for the stresses is presented in fig. 3.

The resultant from the shear stress τx and the normal stress σN in the adhesive 
is denoted by px. Stress px is parallel to the X axis and can be given as:

px = τx cos φx + σN sin φx (2)

As a result of the action of shear stresses tx and ty, a shear deformation of the 
adhesive occurs which causes relative displacements of the adhesive layers in 
the direction parallel to its plane. Stress sN results in adhesive strain normal to its 
plane.

Displacements in adherends 1 and 2 of the scarf joint are given as 
functions u1 = u1(x, y), u2 = u2(x, y) in the X axis direction and υ1 = υ1(x, y), 
υ2 = υ2(x, y) in the Y axis direction. Displacements u1, u2, υ1, υ2 are positive when 
coinciding with the X and Y axes orientations. It is assumed that the functions u1, 
u2, υ1, υ2 are C2-continuous in the sense of the partial derivatives with respect to 
the variables x, y.

In the continuation, the functions of displacements u1, u2, υ1, and υ2 will be 
considered unknown and all the quantities related to the adhesive joint will be 
expressed in terms of these functions.

The scarf joint is considered a section of the beam with the length 2lx loaded 
by an axial force N, a shear force T and a bending moment M. It is approximately 
assumed that the joint is loaded by the internal forces N, T, and M existing at the 
midpoint of the scarf joint. The states of displacements and stress in the adherends 
of the scarf joint resulting from forces N, T, and M are determined using the su-
perposition rule.
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Constitutive equations for the adherends

It is assumed that the adherends are made of the same orthotropic wood with the 
principal axes of orthotropy coinciding with the X and Y axes. In the plane stress 
state, the constitutive relations for adherends 1 and 2 are given by:
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where k = 1 for adherend 1 and k = 2 for adherend 2.

An orthotropic material in the plane stress state is defined by five material 
parameters: two longitudinal moduli of elasticity Ex and Ey, one shear modulus Gxy 
and two Poisson’s ratios νkxy and νkyx. It is assumed that the matrix of coefficients of 
the set of equations (3) – (4) is symmetric, i.e.:
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holds. Hence, only four out of five material parameters are independent.
Having solved (3) – (5) with respect to stresses, one gets:
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where k = 1 for adherend 1 and k = 2 for adherend 2.

Particular values of the material parameters Ex,, Ey,, Gxy,, νxy and νyx can be found 
in [Keylwerth 1951; Goodman, Bodig 1970; Neuhaus 1994]. In the following cal-
culations, the data for spruce are assumed: Ex = 1.2·106 N/cm2, Ey = 0.8·105 N/cm2, 
Gxy = 0.6·105 N/cm2, νxy = 0.03, and νyx = 0.45. 
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Constitutive equations for the adhesive

Stresses in the adhesive result from relative displacements between adherends 
1 and 2. More general considerations make it possible to write the relations be-
tween the stresses in the adhesive and the displacements of the adherends in the 
following form:
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Scarf joint loaded axially 

Let us consider a scarf joint loaded by an axial force N, with tension considered 
positive. The area of the limiting cross-sections of the adherends x = ±lx is 
A = 2gly (fig. 2). Using a semi-inverse method within the framework of the plane 
linear theory of elasticity [Rapp 2014], one can prove that the functions of displace- 
ments of the adherends in the considered scarf joint given in the set of co-ordina-
tes 0XY (fig. 2) have the following form:
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and the stresses in the adherends read:
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Knowing the displacement functions (13) – (15), one can determine the stress-
es in the adhesive τx , τy and σN using (10) – (12) to get:
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From relations (19) – (21) it is found that the axially loaded scarf joint be-
tween adherends made of the same material features stress states in the adherends 
and the adhesive independent of the adhesive thickness and the material proper-
ties, which are identical to the ones in a cross-section at angle xö  in a continuous 
element under a uniaxial stress state.

The adhesive parameters only influence the difference between the displace-
ments of adherends 1 and 2, which is evident in relations (13) and (14).

Scarf joint loaded by a shear force

The shear force T is considered positive when its orientation coincides with the 
one on the Y axis. According to the solution of the theory of elasticity equations, 
the shear forces T in the cross-section x = – lx of adherend 2 and –T in the cross-
section x = lx of adherend 1 cause shear stress τxy in the adherends and the shear 
stress τy in the adhesive. The stresses have parabolic distribution with an accuracy 
of 0.25% [Rapp 2014]. Due to this fact, it is assumed in the approximate solution 
that the shear stresses in the adherends and the adhesive are parabolic and are 
given by:
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Scarf joint loaded by a bending moment

Let us consider now the scarf joint loaded by the bending moments M in the form 
of linearly distributed stress at the edge x = lx of adherend 1 and the edge x = – lx 
of adherend 2, according to fig. 4. 



12 Piotr Rapp, Sławomir FiszeR

Fig. 4. Loading acting on adherends of a scarf joint subjected to a moment

Fig.s 5 and 6 present the normal and shear stress distributions in the adherends 
and the adhesive of the scarf joint resulting from the solution of the plane stress 
linear theory of elasticity. From now on, this solution will be considered exact 
and will form the basis for the assumptions to derive an approximate method of 
solution for the joint loaded by moments. The exact solution concerns the scarf 
joint loaded by the moments M = 1 N·cm and made of spruce wood with the 
material parameters Ex = 1.2·106 N/cm2, Ey = 0.8·105 N/cm2, Gxy = 0.6·105 N/cm2, 
νxy = 0.03, and νyx = 0.45, and the dimensions lx = 22.5 cm, ly = 10.25 cm, and 
g = 4.5cm. For the adhesive, the thickness t = 0.05 cm and the material para-
meters Es = 1.215·105 N/cm2, Gs = 0.45·105 N/cm2, and νs = 0.35 were assumed. 
The stress values at characteristic points of the adhesive and the adherends are 
given in tables 1 and 2. 

Fig. 5. Stresses in adhesive of a joint loaded by moments: a) stress τx, b) stress 
τy (values × 1500) 

Fig. 6. Stresses in adherends of a joint loaded by moments: a) stresses σ1x, σ2x, 
b) stress τ1xy (values × 500), c) stress τ2xy (values × 500)

a)

a)

b)

b) c)
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Table 1. Stresses in adhesive of a joint loaded by a moment

y\x N/cm2 x = – lx x = 0 x = lx

y = ly

τx –3.132·10-4 –3.105·10-4 –3.132·10-4

τy –3.240·10-7 0 3.240·10-7

y = 0
τx 0 0 0
τy –2.031·10-7 0 2.031·10-7

y = – ly

τx 3.132·10-4 3.105·10-4 3.132·10-4

τy –3.240·10-7 0 3.240·10-7

Table 2. Stresses in adherends of a scarf joint loaded by a moment 

y\x N/cm2
Adherend 1 Adherend 2

x = – lx x = 0 x = lx x = – lx x = 0 x = lx

y = ly

σx –3.166·10-3 –3.175·10-3 –3.173·10-3 –3.173·10-3 –3.175·10-3 –3.166·10-3

τxy 0 0 0 0 0 0

y = 0
σx 0 0 0 0 0 0
τxy –1.954·10-6 –1.020·10-6 0 0 1.020·10-6 1.954·10-6

y = – ly

σx 3.166·10-3 3.175·10-3 3.173·10-3 3.173·10-3 3.175·10-3 3.166·10-3

τxy 0 0 0 0 0 0

 min τ1xy = –2.940·10-6 N/cm2 (fig. 6b), max τ2xy = 2.940·10-6 N/cm2 (fig. 6c), σ1y = σ2y = 0

From now on, the adhesive stresses px and qy parallel to the plane 0XY are 
considered, where px = τx cos φx + σN sin φx and qy = τy. From fig. 5, in which the 
solutions of the theory of elasticity equations are presented, which are considered 
as exact in this paper, it is assumed in the approximate solution that the stress 
distributions px and qy are determined by the planes passing through the X and Y 
axes, respectively, as shown in fig. 7.

Let us denote p = max px(x, y) and q = max qy(x, y). The stresses px and py in 
the adopted set of co-ordinates are given by:
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The stress resultant in the adhesive must be in equilibrium with the moment 
M. Hence, the following condition yields:
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The shear force Q(x) in adherend 1 due to the loading qy is determined as:
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one can approximately assume, based on fig. 7b, that the shear stress τ1xy in adhe-
rend 1 is:
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Fig. 7. Approximate distribution of stresses in the adhesive

The normal stress σ1x in adherend 1 (fig. 7a) is approximately constant with 
respect to x and linear in y. It can be given by:
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Let us also assume that:

0),(1 =yxys (29)

The detailed analysis of the stress distributions in the adhesive and the adhe-
rends of the considered scarf joint loaded by a moment, which was the basis for 
the above assumed approximations, was carried out in the paper [Rapp 2014]. 

The displacements u1 and υ1 in adherend 1 of the scarf joint fulfil the following 
set of equations:
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which is obtained after substitution of relations (27) – (29) with the constitutive 
equations (7) – (9). 

Solving equations (30) and (31) in terms of ∂u1/∂x and ∂υ1/∂y, one gets:
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and after integration the result is:
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where f is an arbitrary function of the variable y and h is an arbitrary function of 
the variable x. 

Substitution of these relations to expression (32) leads to:
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The left-hand side of equality (34) represents a function of the variable y, while 
the right-hand side – a function of the variable x. Thus, both sides of (34) must be 
constant functions. Hence, 
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where A is an arbitrary constant. The functions f and h can be found by integration 
of (35):
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where B and C are arbitrary constants. Substitution of these functions to the for-
mulae (33) gives the displacement functions u1 and υ1 in the form:
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where A, B, and C are arbitrary constants. 

It is assumed that the scarf joint loaded by moments features a deformation 
mode symmetric about the Y axis. This yields the conditions:
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Stresses in the adhesive depend on the displacement difference between ad-
herends 1 and 2. The constitutive relation for the adhesive in the Y direction takes 
the form:
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Equation (40), after substitution of the second relation (24) and the formulae (37) 
and (39), yields the constant A:
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The constitutive relation in the X direction reads:
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Equation (42), after substitution of the first relation (24) and the formulae (36) 
and (39), yields the constant A:
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Constants B and C are found using the kinematic boundary conditions. Com-
paring relations (41) and (43) leads to:
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Values p and q follow from relations (25) and (44):
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Having found p and q, from (24) one can determine approximate stress distri-
butions in the adhesive of the joint loaded by moments:
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Complete stress sets in the adhesive resulting from the loading by forces N, 
T, and M are determined using the superposition rule leading to the following 
relations:
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and complete stress sets in the adherends of the scarf joint are given by:
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where p and q are defined in (45) and (46).
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Numerical example

The formulae for stresses in the adhesive and the adherends of the scarf joint 
loaded by the normal force N and the shear force T coincide with the ones result-
ing from the theory of elasticity. Thus, it is only necessary to verify the accuracy 
of the suggested method in the case of the joint loaded by moments M.

Let us consider a scarf joint loaded by the moments M = 1 N·cm according 
to fig. 4, made of spruce wood with the material parameters Ex = 1.2·106 N/cm2, 
Ey = 0.8·105 N/cm2, Gxy = 0.6·105 N/cm2, νxy = 0.03, and νyx = 0.45, the dimensions 
lx = 22.5 cm, ly = 10.25 cm, and g = 4.5cm. The adhesive thickness is assumed as 
t = 0.05 cm and its material constants Es = 1.215·105 N/cm2, Gs = 0.45·105 N/cm2, 
and νs = 0.35. These data yield tgφx = 0.1; cosφx = 1: 101  and δu = 1,00627. 
Substitution of the data to relations (45) and (46) leads to p = 3.16824·10–4 and 
q = 2.03704·10–7. For y = ly and x = lx, formulae (47) and (49) make it possible 
to determine the values of τx and τy and to compare them with appropriate mean 
values τx,mean and τy,mean computed from the solution of the linear theory of elasticity 
(fig. 5). The results are presented in table 3. 

Table 3. Comparison of stresses in the adhesive of a scarf joint loaded by moments

Adhesive
edge

Approximate
method

Linear theory of 
elasticity

Error
[%]

y = ly τx = –3.1369·10–4 N/cm2 τx.mean = –3.1185·10–4 N/cm2 –0.59
x = lx τy = 2.0269·10–7 N/cm2 τy.mean = 2.1779·10–7 N/cm2 6.93

τy.mean = 2.1779·10–7 N/cm2 is the mean value from the entire edge x = lx

Stress τx in the adhesive from the approximate method has an accuracy of 
–0.59%, while stress τy – 6.93%. However, stress τy is approx. 103 times smaller 
than τx. Thus, in order to correctly assess the accuracy of the approximate method, 
it is better to analyse the extreme resultant stress at the corner of the adhesive and 
compare it with the extreme mean stress τmean coming from the equations of the 
theory of elasticity. For stresses τ and τmean, one gets:

222 )1( yxx tg τϕττ ++=

2
,meanxτ= (1+ tg 2ϕx ) +τ

2
y mean,τmean

Substitution of the values given in table 3 to these relations yields:

τ = 3.1525·10–4 N/cm2

τmean = 3.1341·10–4 N/cm2,

Hence, resultant stress τ from the approximate method is computed with an 
accuracy of –0.59% with respect to stress τmean resulting from the exact approach. 
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In the analysed case, the error in stress τy does not practically influence the accu-
racy of the resultant stress. In cases of different ratios of joint dimensions, errors 
may vary. However, for lx ≥ ly, stress τx remains dominant and the error in stress 
τy has a small influence on the error of the resultant stress.

Thus, it can be concluded, that the approximate method can be considered 
a sufficiently accurate approach to the analysis from the point of view of engineer-
ing practice.

Conclusions

The paper presents an approximate formulation of a numerical model for adhesive 
scarf joints in wooden beams with an assumption of adhesive deformability. This 
approximate model is based on conclusions coming from the general solution of 
the plane linear theory of elasticity. It was assumed that wood is orthotropic and 
the joint can be loaded by axial forces, shear forces and bending moments. In the 
framework of the approximate numerical model, analytical relations for stresses 
in the adhesive, as well as displacements and stresses in the adherends of the scarf 
joint, have been derived. 

It was shown that the scarf joint loaded axially in the case of adherends made 
of an identical material, the stress states in the adhesive and the adherends, do not 
depend on the thickness and material parameters and are identical to those in a 
cross-section at angle φx of a continuous element under a uniaxial stress state. 

The adhesive parameters influence only the difference between the adherend 
displacements.

Shear force generates shear stress τxy in the adherends and shear stress τy, in 
the adhesive, which, with a good degree of accuracy – approx. 0.25% – feature 
parabolic distributions defined by the relations for plain beams well known from 
the strength of materials.

Based on the exact solution of the linear theory of elasticity for a scarf joint 
loaded by moments, an approximate method has been proposed to compute dis- 
placements and stresses in the adherends and stresses in the adhesive of the scarf 
joint. 

A numerical example proved the high degree of accuracy of the approximate 
model when compared to the general one formulated within the framework of the 
plane linear theory of elasticity.

The derived relations are simple and very useful in practical engineering com-
putations.

 Currently a broad series of natural scale model experiments on beams with 
scarf joints is being carried out in the Institute of Structural Engineering of Poznan 
University of Technology. It is planned that the results of these experiments will 
be used to formulate the damage criterion for a joint and to verify stress distribu-
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tions in adhesive and adherends using the finite element method implemented in 
Abaqus software.
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