PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 5 |

Tytuł artykułu

The dynamics of soil moisture and salinity after using saline water freezing-melting combined with flue gas desulfurization gypsum

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A laboratory experiment was conducted in soil columns to study the moisture and salt redistribution through soil profile after the application of saline ice melt-water (SIMW) and flue gas desulfurization gypsum (FGDG) in a saline-sodic soil. The study consisted of SIMW (3200 ml frozen saline groundwater) and four SIMW+FGDG treatments which were SIMW+25%GR (7.9 mg·cm-2, gypsum require (GR) in the surface of soil column), SIMW+50%GR (15.9 mg·cm-2), SIMW+70%GR (23.8 mg·cm-2), and SIMW+100%GR (31.8 mg·cm-2). The results showed that Na+ content, EC, SAR, and pH were reduced near the surface layers in all treatments, but the trend was reversed in deeper soil layers. Comparing the SIMW treatments, treatments containing FGDG showed higher desalting rate, leaching depth, and soil moisture at the end of the experiment. The SIMW+50%GR treatment resulted in the highest leaching rate of Na+ and lowest EC and SAR in 0-40 cm soil layer. With the increase of the applied FGDG, there was no significant difference in reclamation effect. Therefore, when the small amount of gypsum was added in conjunction with saline ice meltwater, better leached effect of sodium was achieved.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

5

Opis fizyczny

p.1763-1772,fig.,ref.

Twórcy

autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
  • Graduate University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Nanyang Normal University, Nanyang 473061, China
autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China

Bibliografia

  • 1. GHASSEMI F., JAKEMAN A.J., NIX H.A. Salinisation of land and water resources: human causes, extent, manage­ment and case studies. Cab International. 1995.
  • 2. KASZUB KIE WICZ J., ANGELOW Z., KAWALKO D., JEZIERSKI P. Conditions of Desalinization Process of Soils Flooded with Copper Mining Wastewater [J]. Pol. J. Environ. Stud., 19, (4), 739, 2010.
  • 3. QURESHI A.S., MCCORNICK P.G., QADIR M., ASLAM Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agr. Water Manage. 95, 1, 2008.
  • 4. ELMORE W.W. Water purification by natural freezing. Masters Abstracts International. 45, (03), 1968.
  • 5. FERTUCK L. Water Purification by Freezing Reservoirs, work done during the season 1968 to 1969. Saskatchewan Research Council Report E. 1968.
  • 6. SHONE R.D.C. The freeze desalination of mine waters. Journal of the South African Institute of Mining and Metallurgy. 87, 107, 1987.
  • 7. CRAGIN J.H., HEWITT A.D., COLBECK S.C. Elution of Ions from Melting Snow: Chromatographic Versus Metamorphic Mechanisms. Cold Regions Research and Engineering Lab Hanover NH. 1993.
  • 8. GAO W. Partial freezing by spraying as a treatment alterna­tive of selected industrial wastes, University of Alberta. PhD thesis. 1998.
  • 9. MADANI A.A., ALY S.E. A combined RO/freezing system to reduce in land rejected brine. Desalination. 75, 179, 1989.
  • 10. HOUSE A. Desalination for water supply FR/RO. Foundation for Water Research. 1-22, 2006.
  • 11. MAHDAVI M., MAHVI A.H., NASSERI S., YUNESIAN M. Application of freezing to the desalination of saline water. Arab. J. Sci. Eng. 36, 1171, 2011.
  • 12. BEIER N, SEGO D, DONAHUE R., BIGGAR K. Laboratory investigation on freeze separation of saline mine waste water. Cold Reg. Sci. Technol. 48, 239, 2007.
  • 13. XIE L., MA J., CHENG F., LI P., LIU J., CHEN W., WANG S. Study on sea ice desalination technology. Desalination. 245, 146, 2009.
  • 14. HERNÁNDEZ E., RAVENTÓS M., AULEDA J.M., IBARZ A. Concentration of apple and pear juices in a multi­plate freeze concentrator. Innovative Food Science & Emerging Technology. 10, 348, 2009.
  • 15. AULEDA J.M., RAVENTÓS M., SÁNCHEZ J., HERNÁNDEZ E. Estimation of the freezing point of con­centrated fruit juices for application in freeze concentration. J. Food Eng. 105, 289, 2011.
  • 16. BEIER N., SEGO D., DONAHUE R., BIGGAR K. Trickle- freeze separation of contaminants from saline waste water. International Journal of Mining Reclamation and Environment. 21, 144, 2007.
  • 17. WOLICKA D., KOWALSKI W. Biotransformation of Phosphogypsum in Petroleum-Refining Wastewaters [J]. Pol. J. Environ. Stud. 15, 355, 2006.
  • 18. QADIR M., GHAFOOR A., MURTAZA G. Use of saline- sodic waters through phytoremediation of calcareous saline- sodic soils. Agr. Water Manage. 50, 197, 2001.
  • 19. ZHANG X.C., NORTON L.D. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol. 260, 194, 2002.
  • 20. YAZDANPANAH N., MAHMOODABADI M. Reclamation of calcareous saline-sodic soil using different amendments: Time changes of soluble cations in leachate. Arabian Journal of Geosciences. 6, 2519, 2011.
  • 21. HAMZA M. A., ANDERSON W. K. Responses of soil prop­erties and grain yields to deep ripping and gypsum applica­tion in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Crop and Pasture Science. 54, 273, 2003.
  • 22. GILL J.S., SALE P.W.G., TANG C. Amelioration of dense sodic subsoil using organic amendments increases wheat yield more than using gypsum in a high rainfall zone of southern Australia. Field Crop. Res. 107, 265, 2008.
  • 23. WONG V.N.L., DALAL R.C., GREENE R.S.B. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Appl. Soil Ecol. 44, 29, 2009.
  • 24. LI W., KATSUTOSHI S., MIYAZAKI T., ISHIHAMA Y. The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy and Water Environment. 7, 259, 2009.
  • 25. ZHAO C.W., XU L., WANG Z.C., WANG Y.H., CHI C.M. Studying Soil Salinity and Its Relations with Microtopography and Vegetation at Field Scale. Pol. J. Environ. Stud., 22, 1227, 2013.
  • 26. LIU Q., CUI B.S., YANG Z.F. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain, China. Environmental Earth Sciences. 59, 837, 2009.
  • 27. AMEZKETA E., ARAGUES R., GAZOL R. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agron. J. 97, 983, 2005.
  • 28. MACE J.E, AMRHEIN G., OSTER J.D. Comparison of gypsum and sulfuric acid for sodic soil reclamation. Arid Soil Res. Rehab. 13, 171, 1999.
  • 29. BAO S.D. Soil Analysis in Agricultural Chemistry. China Agricultural Press, Beijing. 2005.
  • 30. MAHMOODABADI M., YAZDANPANAH N., SINOBAS L.R., PAZIRA E., NESHAT A. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agr. Water Manage. 120, 30, 2013.
  • 31. MICALE G., CIPOLLINA A., RIZZUTI L. Seawater desalination for freshwater production. Seawater desalina­tion. pp. 1-15, 2009.
  • 32. SHAINBERG I., SINGER M.J. Soil response to saline and sodic conditions. In: Tanji, K.K. (Ed.), Agricultural Salinity Assessment and Management. American Society of Civil Engineering, New York, USA, pp. 91-112, 1990.
  • 33. OSTER, J. D. Gypsum usage in irrigated agriculture: a review. Fert. Res. 3, 73, 1982.
  • 34. KEREN R. Reclamation of sodic-affected soils. Soil ero­sion, Conservation and Rehabilitation. Marcel Dekker Inc., New York, pp., 353-374, 1996.
  • 35. NEBBIA G., MENOZZI G.N. Early experiments on water desalination by freezing. Desalination. 5, 49, 1968.
  • 36. WEEKS W.F., ACKLEY S.F. The growth, structure and properties of sea ice. Cold Regions Research and Engineering Lab Hanover NH. 1982.
  • 37. RENGASAMY P. Clay dispersion. In 'Soil physical mea­surement and interpretation for land evaluation'. CSIRO Publishing: Melbourne. pp. 200-210, 2002.
  • 38. TEJADA M., GONZALEZ J.L. Beet vinasse applied to wheat under dryland conditions affects soil properties and yield. Eur. J. Agron. 23, 336, 2005.
  • 39. LENTZ R.D, SOJKA R.E., CARTER D.L. Furrow irriga­tion water-quality effects on soil loss and infiltration. Soil Sci. Soc. Am. J. 60, 238, 1996.
  • 40. QADIR M., QURESHI R.H., AHMAD N. Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma. 74, 207, 1996.
  • 41. MURAOKA T., DOS SANTOS R.V. Nutrition of vigna plants on a gypsum amended saline-sodic soils. Plant Nutrition. 92, 438, 2002.
  • 42. HANAY A., BUYUKSANMZ F., KIZILOGLU F.M., CAN- BOLAT M.V. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost Sci. Util. 12, 175, 2004.
  • 43. HAYNES R.J., NAIDU R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosys. 51, 123, 1998.
  • 44. PHILLIP C. Desalination by natural freezing. Desalination. 13, 147, 1973.
  • 45. LI Z. G., LIU X.J., ZHANG X.M., LI W.Q. Infiltration of melting saline ice water in soil columns: Consequences on soil moisture and salt content. Agr. Water Manage. 95, 498, 2008.
  • 46. KEREN R., SHAINBERG I. Effect of dissolution rate on the efficiency of industrial and mined gypsum in improving infil­tration of a sodic soil. Soil Sci. Soc. Am. J. 45, 103, 1981.
  • 47. CHOROM M., RENGASAMY P. Carbonate chemistry, pH and physical properties of an alkaline sodic soil as affected y various amendments. Aust. J. Soil Res. 35, 149, 1997.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e837bf48-e779-4cb2-b739-36d1ada0d3dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.