Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 62 | 4 |

Tytuł artykułu

Thyasirid bivalves from Cretaceous and Paleogene cold seeps


Treść / Zawartość

Warianty tytułu

Języki publikacji



We present a systematic study of thyasirid bivalves from Cretaceous to Oligocene seep carbonates worldwide. Eleven species of thyasirid bivalves are identified belonging to three genera: Conchocele, Maorithyas, and Thyasira. Two species are new: Maorithyas humptulipsensis sp. nov. from middle Eocene seep carbonates in the Humptulips Formation, Washington State, USA, and Conchocele kiritachiensis sp. nov. from the late Eocene seep deposit at Kiritachi, Hokkaido, Japan. Two new combinations are provided: Conchocele townsendi (White, 1890) from Maastrichtian strata of the James Ross Basin, Antarctica, and Maorithyas folgeri (Wagner and Schilling, 1923) from Oligocene rocks from California, USA. Three species are left in open nomenclature. We show that thyasirids have Mesozoic origins and appear at seeps before appearing in “normal” marine environments. These data are interpreted as a record of seep origination of thyasirids, and their subsequent dispersal to non-seep environments. We discuss the age of origination of thyasirids in the context of the origin of the modern deep sea fauna and conclude that thyasirids could have deep sea origins. This hypothesis is supported by the observed lack of influence of the Cretaceous and Paleogene Oceanic Anoxic Events on the main evolutionary lineages of the thyasirids, as seen in several other members of the deep sea fauna.

Słowa kluczowe








Opis fizyczny




  • Amano, K. and Jenkins, R.G. 2007. Eocene drill holes in cold seep bivalves of Hokkaido, northern Japan. Marine Ecology 28: 108–114.
  • Amano, K. and Jenkins, R.G. 2011. New fossil Bathymodiolus (sensu lato) (Bivalvia: Mytilidae) from Oligocene seep carbonates in Eastern Hokkaido, Japan, with remarks on the evolution of the genus. The Nautilus 125: 29–35.
  • Amano, K. and Oleinik, A. 2016. Ancistrolepidine gastropods (Buccinidae) from the upper Eocene hydrocarbon seep deposits in Hokkaido, northern Japan. The Nautilus 130: 158–163.
  • Amano, K., Jenkins, R.G., Sako, Y., Ohara, M., and Kiel, S. 2013. A Paleogene deep sea methane-seep community from Honshu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 387: 126–133.
  • Amano, K., Little, C.T.S., Campbell, K.A., Jenkins, R.G., and Saether, K.P. 2015. Paleocene and Miocene Thyasira sensu stricto (Bivalvia: Thyasiridae) from chemosynthetic communities from Japan and New Zealand. The Nautilus 129: 43–53.
  • Anderson, F.M. 1958. Upper Cretaceous of the Pacific Coast. Geological Society of America Memoir 71: 1–378.
  • Ascher, E. 1906. Die Gastropoden, Bivalven und Brachiopoden der Grödischter Schichten. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients 19: 135–167.
  • Åstrom, E.K.L., Oliver, P.G., and Carroll, M.L. 2017. A new genus and two new species of Thyasiridae associated with methane seeps off Svalbard, Arctic Ocean. Marine Biology Research 13: 402–416.
  • Batstone, R.T., Laurich, J.R., Salvo, F., and Dufour, S.C. 2014. Divergent chemosymbiosis-related characters in Thyasira cf. gouldi (Bivalvia: Thyasiridae). PLoS ONE 9 (3): e92856.
  • Berry, S.S. 1947. New Mollusca from the Pleistocene of San Pedro, California—III. Bulletins of American Paleontology 31: 256–275.
  • Bernard, F.R. 1972. The genus Thyasira in Western Canada (Bivalvia: Lucinacea). Malacologia 11: 365–389.
  • Bernardino, A.F., Smith, C.R., Baco, A., Altamira, I., and Sumida, P.Y.G. 2010. Macrofaunal succession in sediments around kelp and wood falls in the deep NE Pacific and community overlap with other reducing habitats. Deep sea Research I 57: 708–723.
  • Boss, K.J. 1967. Thyasira disjuncta (Gabb, 1866) in the Caribbean Sea. Bulletin of Marine Science 17: 387–388.
  • Bright, M. and Lallier, F.H. 2010. The biology of vestimentiferan tubeworms. Oceanography and Marine Biology: An Annual Review 48: 213–266.
  • Campbell, K. 2006. Hydrocarbon seep and hydrothermal vent paleonenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 362–347.
  • Coan, E.V., Scott, P.V., and Bernard, F.R. 2000. Bivalve seashells of Western North America. Marine bivalve molluscs from Arctic Alaska to Baja California. Santa Barbara Museum of Natural History Monographs 2: iii–v, 1–764.
  • Conrad, T.A. 1849. Description of new fresh water and marine shells. Proceedings of the Academy of Natural Sciences of Philadelphia 4: 152–156.
  • Clarke, A.H. 1989. New mollusks from undersea oil seeps off Louisiana. Malacology Data Net 2: 122–134.
  • Dall, W.H. 1895. Contributions to the Tertiary fauna of Florida, with especial reference to the Miocene Silex-beds of Tampa and the Pliocene beds of the Caloosahatchie River. Part III, A new classification of the Pelecypoda. Wagner Free Institute of Science of Philadelphia, Transactions 3: 483–570.
  • Dando, P.R. and Hartley, J.P. 2005. Colonisation and species succession of a seep-type community on an oil-coated drill cuttings pile in the North Sea. In: Third International Symposium on Hydrothermal Vent and Seep Biology, Abstract Volume, 13. Scripps Institution of Oceanography, La Jolla.
  • Dando, P.R. and Southward, A.J. 1986. Chemoautotrophy in bivalve molluscs of the genus Thyasira. Journal of Marine Biological Association of the United Kingdom 66: 915–929.
  • Dando, P.R. and Spiro, B. 1993. Varying nutritional dependence of the thyasirid bivalves Thyasira sarsi and T. equalis on chemoautotrophic chemosymbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate. Marine Ecology Progress Series 92: 151–158.
  • Dando, P.R., Bussmann, I., Niven, S.J., O’Hara, S.C.M., Schmaljohann, R., and Taylor, L.J. 1994. A methane-seep area in the Skagerrak, the habitat of pogonophore Siboglinium poseidoni and the bivalve mollusc Thyasira sarsi. Marine Ecology Progress Series 107: 157–167.
  • Distel, D. 2000. Phylogenetic relationships among the Mytilidae (Bivalvia): 18S rRNA data suggest convergence in mytilid body plans. Molecular Phylogenetics and Evolution 15: 25–33.
  • d’Orbigny, A. 1844. Paléontologie française: description zoolo gi que et géologique de tous les animaux mollusques et rayonnés fossiles de France. Terrains crétacés (3). Pelecypoda. 807 pp. Victor Masson, Paris.
  • Dufour, S.C. 2005. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biological Bulletin 208: 200–212.
  • Fleming, C.A. 1950. New Zealand Recent Thyasiridae (Mollusca). Transactions of the Royal Society of New Zealand 78: 251–254.
  • Freneix, S. 1980. Bivalves néocrétacés du Nouvelle-Calédonie. Signification biogéographique, biostratigraphique, paléoécologique. Annales de Paléontologie (Invertébrés) 66: 67–134.
  • Fujikura, K., Kojima, S., Tamaki, K., Maki, Y., Hunt, J., and Okutani, T. 1999. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Marine Ecology Progress Series 190: 17–26.
  • Fujiwara, Y., Kato, C., Masui, N., Fujikura, K., and Kojima, S. 2001. Dual symbiosis in the cold seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Marine Ecology Progress Series 214: 151–159.
  • Gabb, W.M. 1866. Paleontology of California. Vol. 2. Cretaceous and Tertiary fossils. Sect. 1 (Tertiary Invertebrate Fossils). 124 pp. Geological Survey of California, Philadelphia.
  • Gill, F.L. and Little, C.T.S. 2013. A new genus of lucinid bivalve from hydrocarbon seeps. Acta Palaeontologica Polonica 58: 573–578.
  • Goedert, J.L. and Benham, S.R. 1999. A new species of Depressigyra? (Gastropoda: Peltospiridae) in Eocene and Oligocene rocks of Western Washington. The Veliger 41: 112–116.
  • Goedert, J.L. and Benham, S.R. 2003. Biogeochemical processes at ancient methane seeps: the Bear River site in southwestern Washington. Geological Society of America Field Guide 4: 201–208.
  • Goedert, J.L. and Kaler, K.L. 1996. A new species of Abyssochryssos (Gastropoda, Loxonematoidea) from middle Eocene cold-seep carbonate in the Humptulips Formation, western Washington. The Veliger 39: 65–70.
  • Goedert, J.L. and Squires, R.L. 1990. Eocene deep sea communities in localized limestone formed by subduction-related methane seeps, southwestern Washington. Geology 18: 1182–1185.
  • Goedert, J.L. and Squires, R.L. 1993. First Oligocene records of Calyptogena (Bivalvia: Vesicomyidae). The Veliger 36: 72–77.
  • Goedert, J.L., Thiel, V., Schmale, O., Rau, W.W., Michaelis, W., and Peckmann, J. 2003. The Late Eocene “Whiskey Creek” methane-seep deposit (western Washington State). Part I: geology, palaeontology and molecular geobiology. Facies 48: 223–240.
  • Gray, J.E. 1854. A revision of the arrangement of the families of bivalve shells (Conchifera). The Annals and Magazine of Natural History, Series 2 13: 408–418.
  • Habe, T. 1964. Shells of the Western Pacific in Colour. Vol. 2. 233 pp. Hoikusha Publishing, Osaka.
  • Hägg, R. 1925. A new Tertiary fauna from Spitsbergen. Bulletin of the Geological Institute of the University of Uppsala 20: 39–55.
  • Hessler, R.R. and Wilson, G.D.F. 1983. The origin and biogeography of malacostracan crustaceans in the deep sea. In: R.W. Sims, J.H. Price, and P.E.S. Whalles (eds.), Evolution, Time, and Space: The Emergence of the Biosphere, 227–254. Academic Press, London.
  • Hickman, C.S. 2015. Paleogene marine bivalves of the deep-water Keasey Formation in Oregon, Part III: The heteroconchs. PaleoBios 32: 1–44.
  • Hryniewicz, K., Bitner, M.A., Durska, E., Haström, J., Hjálmarsdóttir, H.R., Jenkins, R.G., Little, C.T.S., Miyajima, Y., Nakrem, H.A., and Kaim, A. 2016. Paleocene methane seep and wood-fall marine environments from Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology 462: 41–56.
  • Hryniewicz, K., Little, C.T.S., and Nakrem, H.A. 2014. Bivalves from the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard. Zootaxa 3859: 1–66.
  • Iredale, T. 1924: Results from Roy Bell’s Molluscan collections. Proceedings of the Linnaean Society of New South Wales 49: 179–278.
  • Ivanova, M.B. and Moskaletz, I.P. [Moskalec, I.P] 1984. Two new species of bivalve molluscs of the family Thyasiridae from the aquatoria of the Far Eastern State Marine Nature Reserve [in Russian]. In: B.S. Levin (ed.), Životnyj mir Dal’nevostočnogo Morskogo Zapovednika, 45–50. Akademiâ Nauk SSSR, Dal’nevostočnyj Naučnyj Centr, Vladivostok.
  • Jablonski, D. 2005. Evolutionary innovations in the fossil record: the intersection of ecology, development and macroevolution. Journal of Experimental Zoology (Molecular Development and Evolution) 304B: 504–519.
  • Jablonski, D. and Bottjer, D.J. 1991. Environmental patterns in the origins of higher taxa: the post-Paleozoic fossil record. Science 252: 1831–1833.
  • Jablonski, D., Sepkoski, J.J., Bottjer, D.J., and Sheehan, P.M. 1983. Onshoreoffshore patterns in the evolution of Phanerozoic shelf communities. Science 222: 1123–1125.
  • Jeffreys, J.G. 1864. British Conchology Vol. II. Marine Shells. 465 pp. John van Voorst, London.
  • Jenkins, R.G., Kaim, A., Little, C.T.S., Iba, Y., Tanabe, K., and Campbell, K.A. 2013. Worldwide distribution of the modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrocarbon seeps. Acta Palaeontologica Polonica 58: 357–382.
  • Jenkins, R.G., Kaim, A., Sato, K., Moriya, K., Hikida, Y., and Hirayama, R. 2017. Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontologica Polonica 62: 683–690.
  • Judd, A. and Hovland, M. 2007. Seabed Fluid Flow. The Impact on Geology, Biology and the Marine Environment. 475 pp. Cambridge University Press, Cambridge.
  • Johnson, S.B., Krylova, E.M., Audzijonyte. A., Sahling, H., and Vrijenhoek, R.C. 2017. Phylogeny and origins of chemosynthetic vesicomyid clams. Systematics and Biodiversity 15: 346–360.
  • Kaim, A., Skupien, P., and Jenkins, R.G. 2013. A new Lower Cretaceous hydrocarbon seep locality from the Czech Carpathians and its fauna. Palaeogeography, Palaeoecology, Palaeoclimatology 390: 42–51.
  • Kamenev, G.M., Nadtochy, V.A., and Kuznetsov, A.P. 2001. Conchocele bisecta (Conrad, 1849) (Bivalvia: Thyasiridae) from cold-water methanerich areas of the Sea of Okhotsk. The Veliger 44: 84–94.
  • Kanie, Y., Yoshikawa, Y., Sakai, T., and Takahashi, T. 1993. The Cretaceous chemosynthetic cold water−dependent molluscan community discovered from Mikasa City, central Hokkaido. Science Report of the Yokosuka City Museum 41: 31–36.
  • Katto, J. and Hattori, M. 1965. Some Veneridae from the Shimantogawa Group in the Outer Zone of Shikoku, Japan. Research Reports of the Kochi University, Natural Science 13: 7–10.
  • Katto, J. and Masuda, K. 1979. Tertiary Mollusca from the southern part of Kii Peninsula, Wakayama Prefecture, Southwest Japan. Research Reports of the Kochi University, Natural Science 27: 97–111.
  • Kauffman, E.G. 1967. Cretaceous Thyasira from the Western Interior of North America. Smithsonian Miscellaneous Collections 152: 1–159.
  • Kauffman, E.G., Arthur, M.A., Howe, B., and Scholle, P.A. 1996. Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, U.S.A. Geology 24: 799–802.
  • Kharlamenko, V.I., Kamenev, G.M., Kalachev, A.V., Kiyashko, S.I., and Ivin, V.V. 2016. Thyasirid bivalves from the methane seep community off Paramushir Island (Sea of Okhotsk) and their nutrition. Journal of Molluscan Studies 82: 391–402.
  • Khudik, V.D. [Hudik, V.D.] 1989. Dvustvorčatye mollûski miocena ÛgoZapadnogo Sahalina. 130 pp. Akademiă Nauk SSSR, Dal’nevostočnoe Otdelenie Dal’nevostočnyj Geologičeskiy Institut, Vladivostok.
  • Kiel, S. 2008. An unusual new gastropod from an Eocene hydrocarbon seep in Washington State. Journal of Paleontology 82: 188–191.
  • Kiel, S. 2010. On the potential generality of depth-related ecologic structure in cold-seep communities: Cenozoic and Mesozoic examples. Palaeogeography, Palaeoclimatology, Palaeoecology 295: 245–257.
  • Kiel, S. 2013. Lucinid bivalves from ancient methane seeps. Journal of Molluscan Studies 79: 349–363.
  • Kiel, S. 2015. Did shifting seawater sulfate concentrations drive the evolution of deep sea methane seep ecosystems? Proceedings of the Royal Society B 282: 20142908.
  • Kiel, S. and Amano, K. 2013. The earliest bathymodiolin mussels: an evaluation of Eocene and Oligocene taxa from deep sea methane seep deposits in western Washington State, USA. Journal of Paleontology 87: 589–602.
  • Kiel, S. and Goedert, J. 2007. New mollusks associated with biogenic substrates in Cenozoic deep-water sediments of Washington State. Acta Palaeontologica Polonica 52: 41–52.
  • Kiel, S. and Little, C.T.S. 2006.Cold seep mollusks are older than the general marine mollusk fauna. Science 313: 1429–1431.
  • Kiel, S. and Peckmann, J. 2007. Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40: 345–357.
  • Kiel, S. and Taviani, M. 2017. Chemosymbiotic bivalves from Miocene methane-seep carbonates in Italy. Journal of Paleontology 91: 444–466.
  • Kiel, S., Amano, K., and Jenkins, R.G. 2008. Bivalves from Cretaceous cold seep deposits on Hokkaido, Japan. Acta Palaeontologica Polonica 53: 525–537.
  • Kiel, S., Amano, K., Hikida, Y., and Jenkins, R.G. 2009. Wood-fall associations from Late Cretaceous deep-water sediments of Hokkaido, Japan. Lethaia 42: 74–82.
  • Kiel, S., Amano, K., and Jenkins, R.G. 2016. Predation scar frequencies in chemosymbiotic bivalves at an Oligocene seep deposit and their potential relation to inferred sulfide tolerances. Palaeogeography, Palaeoclimatology, Palaeoecology 453: 139–145.
  • Kristofovich, L.V. [Krištofovič, L.V.] 1936. Shells of the group Thyasira bisecta (Conrad) from the Tertiary deposits of the west coast of Kamchatka [in Russian]. Trudy Neftânogo-Razvedočnogo Instituta, Seriâ A 88: 3–67.
  • Kristofovich, L.V. [Krištofovič, L.V.] 1964. Mollûski tretičnyh otloženij Sahalina. 230 pp. Nedra, Leningrad.
  • Lamarck, J.B. 1818. Histoire naturelle des animaux sans vertèbres: présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent: précédée d’une introduction offrant la détermination des caractères essentiels de l’Animal, sa distinction du végétal et des autres corps naturels, enfin, l’Exposition des Principes fondamentaux de la Zoologie. Tome Cinquiéme. 612 pp. Deterville et Verdiére, Paris.
  • Levin, L. 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology: An Annual Review 43: 1–46.
  • Lindner, A., Cairns, S.D., and Cunningham, C.W. 2008. From offshore to onshore: multiple origins of shallow-water corals from deep sea ancestors. PLoS ONE 3(6): e2429.
  • Linnaeus, C. 1758. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis,-locis. Editio decima. 824 pp. Laurentius Salvius, Holmiae.
  • Liljedahl, L. 1992. The Silurian Ilonia prisca, oldest known deep-burrowing suspension-feeding bivalve. Journal of Paleontology 66: 206–210.
  • Little, C.T.S., Birgel, D., Boyce, A.J., Crame, A.J., Francis, J.E., Kiel, S., Peckmann, J., Pirrie, D., Rollinson, and G.K., Witts, J.D. 2015. Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 418: 213–228.
  • Lorion, J., Kiel, S., Faure, B., Kawato, M., Ho, Y.W.S., Marshall, B., Tsuchida, S., Miyazaki, Y.-I., and Fujiwara, Y. 2013. Adaptative radiation of chemosymbiotic deep sea mussels. Proceedings of the Royal Society B 280: 20131243.
  • López-Jamar, E., González, G., and Mejuto, J. 1987. Ecology, growth and production of Thyasira flexuosa (Bivalvia, Lucinacea) from Ría de la Coruña, North-West Spain. Ophelia 27: 111–126.
  • Montagu, G. 1803. Testacea Britannica. 606 pp. J. White, London.
  • Moore, E.J. 1963. Miocene marine mollusks from the Astoria Formation in Oregon. United States Geological Survey Professional Paper 419: 1–119.
  • Moore, E.J. 1988. Tertiary marine pelecypods of California and Baja California: Lucinidae trough Chamidae. United States Geological Survey Professional Paper 1228-D: 1–46.
  • Nesbitt, E.A., Martin, R.A., and Campbell, K.A. 2013. New records of Oligocene diffuse hydrocarbon seeps, northern Cascadia margin. Palaeogeography, Palaeoclimatology, Palaeoecology 390:116–129.
  • Neumayr, M. 1884. Morphologie des Bivalvenschlosses. Kaiserlich-Königliche Akademie der Wissenschaften, Wien. Mathematisch-Naturwissenschaftliche Klasse, Sitzungsberichte Abteilung 1: 385–418.
  • Nobuhara, T., Hitomi, S., and Shiratori, Y. 2016. Predatory drill intensity on deep sea bivalves from the Eocene Poronai Formation, Hokkaido, Japan―comparison between the cold-seep site and its surrounding normal mud [in Japanese with English abstract]. Geoscience Reports of Shizuoka University 43: 13–20.
  • Nobuhara, T., Onda, D., Kikuchi, N., Kondo, Y., Matsubara, K., Amano, K., Jenkins, R.G., Hikida, Y., and Majima, R. 2008. Lithofacies and fossil assemblages of the Upper Cretaceous Sada Limestone, Shimanto City, Kochi Prefecture, Shikoku, Japan [in Japanese with English abstract]. Fossils, The Palaeontological Society of Japan 84: 47–60.
  • Noda, Y. 1992. Neogene molluscan faunas from the Haboro Coal-field, Hokkaido, Japan. Science Reports of the Tohoku University, Second Series (Geology) 62: 1–141.
  • Ohara, S. and Kanno, S. 1969. Mid-Tertiary molluscan faunas from the Uryu coal-field of central Hokkaido, Japan. Fossils, The Palaeontological Society of Japan 17: 41–49.
  • Ohara, S. and Kanno, S. 1973. Mid-Tertiary marine molluscan faunas of the Uryu coal-field. Science Reports of the Tohoku University, 2nd Series, Special Volume 6: 125–135.
  • Okutani, T., Fujikura, K., and Kojima, S. 1999. Two new hadal bivalves of the family Thyasiridae from the plate convergent area of the Japan Trench. Venus 58: 49–54.
  • Oliver, P.G. and Drewery, J. 2013. New species of chemosymbiotic clams (Vesicomyidae and Thyasiridae) from a putative “seep” in the Hatton-Rockall Basin, north-east Atlantic. Journal of the Marine Biological Association of the United Kingdom 94: 389–402.
  • Oliver, P.G. and Frey, M.A. 2014. Ascetoaxinus quatsinoensis sp. et gen. nov. (Bivalvia: Thyasiroidea) from Vancouver Island, with notes on Conchocele Gabb, 1866, and Channelaxinus Valentich-Scott and Coan, 2012. Zootaxa 3869: 452–468.
  • Oliver, P.G. and Killeen, I.J. 2002. The Thyasiridae (Mollusca: Bivalvia) of the British continental shelf and North Sea oilfields. Biomôr Reports 3: 1–73.
  • Oliver, P.G. and Holmes, A.M. 2006. New species of Thyasiridae (Bivalvia) from chemosynthetic communities in the Atlantic Ocean. Journal of Conchology 39: 175–183.
  • Oliver, P.G. and Holmes, A.M. 2007. A new species of Axinus (Bivalvia: Thyasiroidea) from the Baby Bare Seamount, Cascadia Basin, NE Pacific, with a description of the anatomy. Journal of Conchology 39: 363–376.
  • Oliver, P.G. and Sellanes, J. 2005. New species of Thyasiridae from the methane seepage area of Concepción, Chile. Zootaxa 1092: 1–20.
  • Oliver, P.G., Rodrigues, C.F., Carney, R., and Duperron, S. 2013. Spinaxinus (Bivalvia: Thyasiroidea) from sulfide biogenerators in the Gulf of Mexico and hydrothermal vents in the Fiji Back Arc: chemosymbiosis and taxonomy. Scientia Marina 77: 663–676.
  • Payne, C.M. and Allen, J.A. 1991. The morphology of deep sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean. Philosophical Transactions: Biological Sciences 334: 481–562.
  • Peckmann, J., Goedert, J.L., Thiel, V., Michaelis, W., and Reitner, J. 2002. A comprehensive approach to study of methane seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49: 855–873.
  • Peckmann, J., Kiel, Sandy, S.M.R., Taylor, D.G., and Goedert, J.L. 2011. Mass occurrences of the brachiopod Halorella in Late Triassic methane-seep deposits, Eastern Oregon. Journal of Geology 119: 207–220.
  • Philippi, R.A. 1845a. Bemerkungen über die Mollusken-Fauna von Massachusetts. Zeitschrift für Malakozoologie 1845: 68–79.
  • Philippi, R.A. 1845b. Kritische Bemerkungen über einige Trochus-arten und die Gattung Axinus. Zeitschrift für Malakozoologie 1845: 87–91.
  • Powell, A.W.B. 1955. Mollusca of the southern islands of New Zealand. Department of Scientific and Industrial Research Cape Expedition Series Bulletin 15: 1–151.
  • Rigby, K.J. and Goedert, J.L. 1996. Fossil sponges from a localized cold seep limestones in Oligocene rocks of the Olympic Peninsula, Washington. Journal of Paleontology 70: 900–908.
  • Rodrigues, C.F., Oliver, P.G., and Cunha, M.R. 2008. Thyasiroidea (Bivalvia: Mollusca) from the mud volcanoes of the Gulf of Cadiz. Zootaxa 1752: 41–56.
  • Rosenkrantz, A. 1942. Slægten Thyasiras geologiske Optræden. Meddelelser fra Dansk Geologisk Forening 10: 277–278.
  • Rosenkrantz, A. 1970. Marine Upper Cretaceous and lowermost Tertiary deposits in West Greenland. Investigations before and since 1938. Meddelelser fra Dansk Geologisk Forening 19: 406–453.
  • Sasaki, T., Warén, A., Kano, Y., Okutani, T., and Fujikura, K. 2010. Gastropods from Recent hot vents and cold seeps: systematics, diversity and life strategies. In: S. Kiel (ed.), The Vent and Seep Biota. Aspects from Microbes to Ecosystems, 169–254. Springer, Dordrecht.
  • Sibuet, M. and Olu, K. 1998. Biogeography, diversity and fluid dependence of deep sea cold-seep communities at active and passive margins. Deep Sea Research II 45: 517–567.
  • Smith, C.R. and Baco, A.R. 2003. Ecology of whale falls at deep sea floor. Oceanography and Marine Biology: An Annual Review 41: 311–354.
  • Spencer, H.G., Marshall, B.A., Maxwell, P.A., Grant-Mackie, J.A., Stilwell, J.D., Willan, R.C., Campbell, H.J., Crampton, J.S., Henderson, R.A., Bradshaw, M.A., Waterhouse, J.B., and Pojeta, J. 2009. Phylum Mollusca. Chitons, clams, tusk shells, squids and kin. In: D. Gordon (ed.), New Zealand Inventory of Biodiversity, Volume One. Kingdom Animalia. Radiata, Lophotrochozoa, Deuterostomia, 161–254. Canterbury University Press, Christchurch.
  • Squires, R.L. 1995. First fossil species of the chemosynthetic community gastropod Provanna: localized cold-seep limestones in the upper Eocene and Oligocene rocks, Washington. The Veliger 38: 30–36.
  • Squires, R.L. and Goedert, J.L. 1991. New late Eocene mollusks from localized limestone deposits formed at subduction-related methane seeps, southwestern Washington. Journal of Paleontology 65: 412–416.
  • Squires, R.L. and Goedert, J.L. 1995. An extant species of Leptochiton (Mollusca: Polyplacophora) in Eocene and Oligocene cold-seep limestones, Olympic Peninsula, Washington. The Veliger 38: 47–53.
  • Squires, R.L. and Gring, M.P. 1996. Late Eocene chemosynthetic? bivalves from suspect cold seeps, Wagonwheel Mountain, Central California. Journal of Paleontology 70: 63–73.
  • Taylor, J.D. and Glover, E.A. 2010. Chemosymbiotic bivalves. In: S. Kiel (ed.), The Vent and Seep Biota. Aspects from Microbes to Ecosystems, 107–136. Springer, Dordrecht.
  • Taylor, J.D., Williams, S.T., and Glover E.A. 2007. Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. Journal of the Marine Biological Association of the United Kingdom 87: 565–574.
  • Tegland, N.M. 1928. Thyasira disjuncta Gabb, not Thyasira bisecta Conrad, the Recent West Coast shell. The Nautilus 16: 129–131.
  • Thiedig, F., Pickton, C.A.G., Lehmann, U., Harland, U.B., and Anderson, H.J. 1980. Das Tertiär von Renardodden (Östlich Kapp Lyell, Westspitzbergen, Svalbard). Mitteilungen Geologisch-Paläontologisches Institut der Universität Hamburg 49: 135–146.
  • Thuy, B., Gale, A.S., Kroh, A., Kucera, M., Numberger-Thuy, L.D., Reich, M., and Stöhr, S. 2012. Ancient origin of the modern deep sea fauna. PLoS ONE 7 (10): e46913.
  • Valentich-Scott, P., Powell, C.L. II, Lorenson, T.D., Edwards, B.E. 2014. A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water Beaufort Sea, northern Alaska. Zookeys 462: 11–26.
  • Valentine, J.W., Jablonski, D., Kidwell, S.M., and Roy, K. 2006. Assessing the fidelity of the fossil record by using marine bivalves. Proceedings of the National Academy of Sciences of the USA 103: 6599–6604.
  • Van Dover, C.L. 2000. The Ecology of Deep Sea Hydrothermal Vents. 424 pp. Princeton University Press, Princeton.
  • Van Winkle, K. 1919. Remarks on some new species from Trinidad. Bulletins of American Paleontology 8: 19–27.
  • Verrill, A.E. and Bush, K.J. 1898. Revision of the deep water Mollusca of the Atlantic Coast of North America, with description of new genera and species, Pt. 1, Bivalvia. Proceedings of the United States National Museum 20: 775–901.
  • Vinn, O., Kupriyanova, E.K., and Kiel, S. 2013. Serpulids (Annelida, Polychaeta) at Cretaceous to modern hydrocarbon seeps: ecological and evolutionary patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 390: 35–41.
  • Vonderbank, K. 1970. Geologie und Fauna der Tertiären Ablagerungen Zen tral-Spitsbergens. Norsk Polarinstitutt Skrifter 153: 5–119.
  • Wagner, C.M. and Schilling, K.H. 1923. The San Lorenzo Group of the San Emigdio region, California. University of California Publications Bulletin of the Department of Geological Sciences 14: 235–276.
  • Weller, S. 1903. The Stokes collection of Antarctic fossils. Journal of Geology 11: 413–419.
  • White, C.A. 1890. Scientific results of explorations by the U.S. Fish Commission Steamer Albatross. No. 10. On certain Mesozoic fossils from the Islands of St. Paul’s and St. Peter’s in the Straits of Magellan. Proceedings of the United States National Museum 13: 13–14.
  • Whiteaves, G.F. 1874. Notes on the Cretaceous fossils collected by Mr. James Richardson, at Vancouver and the adjacent islands. Geological Survey of Canada Report of Progress for 1873–74: 5–18.
  • Wilckens, O. 1910. Die Anneliden, Bivalven und Gastropoden der antarktischen Kreideformation. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903 3 (12): 1–132.
  • Williscroft, K., Grasby, S.E., Beauchamp, B., Little, C.T.S., Dewing K., Birgel, D., and Poulton, T. 2017. Extensive Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic. Geological Society of America Bulletin 129: 788–805.
  • Wolfe, E.W. and McKee, E.H. 1968. Geologic Map GM-4. Geology of the Grays River quadrangle, Wahkiakum and Pacific Counties, Washington. Scale 1:62500. 6 pp. State Printing Plant, Olympia.
  • Wood, S.V. 1851. Monograph of the Crag Mollusca with descriptions of shells from the Upper Tertiaries of the British Isles. Part 2. Bivalves. Palaeontographical Society Monographs 4: 1–150.
  • Wortmann, U.G. and Paytan, A. 2012. Rapid variability of seawater chemistry over the past 130 million years. Science 337: 334–336.
  • Yabe, H. and Nomura, S. 1925. Notes on the Recent and Tertiary species of Thyasira from Japan. Science Reports of the Tohoku Imperial University. 2nd Series, Geology 4: 83–95.
  • Yokoyama, M. 1890. Versteinerungen aus der japanischen Kreide. Palaeontographica 36: 159–202.
  • Zelaya, D.G. 2009. The genera Thyasira and Parathyasira in the Magellan region and adjacent Antarctic waters (Bivalvia: Thyasiridae). Malacologia 51: 271–290.
  • Zelaya, D.G. 2010. The new species of Thyasira, Mendicula and Axinulus (Bivalvia; Thyasiroidea) from Sub-Antarctic and Antarctic waters. Polar Biology 33: 607–616.
  • Zinsmeister, W.J. and Macellari, C.E. 1988. Bivalvia (Mollusca) from Seymour Island, Antarctic Peninsula. In: R.M. Feldmann and M.O. Woodburne (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula, 253–284. Geological Society of America, Boulder.
  • Zwicker, J., Smrzka, D., Gier, S., Goedert, J.L., and Peckmann, J. 2015. Mineralized conduits are part of the uppermost plumbing system of Oligocene methane-seep deposits, Washington State (USA). Marine and Petroleum Geology 66: 616–630.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.